Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2023; 33(05): 261-269
DOI: 10.1055/a-2004-5836
Review

A Novel Neurorehabilitation Approach for Neural Plasticity Overstimulation and Reorganization in Patients with Neurological Disorders

Ein neuartiger Ansatz in der Neurorehabilitation für die Überstimulation und Reorganisation der Neuroplastizität bei Patienten mit neurologischen Störungen
1   Department of Physiotherapy, Middle East University, Amman, Jordan
2   Applied Science Research Center, Applied Science Private University
,
Giuseppe Annino
3   Department of Medicine Systems, University of Rome “Tor Vergata”, Rome, Italy
› Author Affiliations

Abstract

Neurological disorders are those that are associated with impairments in the nervous system. These impairments affect the patient’s activities of daily living. Recently, many advanced modalities have been used in the rehabilitation field to treat various neurological impairments. However, many of these modalities are available only in clinics, and some are expensive. Most patients with neurological disorders have difficulty reaching clinics. This review was designed to establish a new neurorehabilitation approach based on the scientific way to improve patients’ functional recovery following neurological disorders in clinics or at home. The human brain is a network, an intricate, integrated system that coordinates operations among billions of units. In fact, grey matter contains most of the neuronal cell bodies. It includes the brain and the spinal cord areas involved in muscle control, sensory perception, memory, emotions, decision-making, and self-control. Consequently, patients’ functional ability results from complex interactions among various brain and spinal cord areas and neuromuscular systems. While white matter fibers connect numerous brain areas, stimulating or improving non-motor symptoms, such as motivation, cognitive, and sensory symptoms besides motor symptoms may enhance functional recovery in patients with neurological disorders. The basic principles of the current treatment approach are established based on brain connectivity. Using motor, sensory, motivation, and cognitive (MSMC) interventions during rehabilitation may promote neural plasticity and maximize functional recovery in patients with neurological disorders. Experimental studies are strongly needed to verify our theories and hypothesis.

Zusammenfassung

Die Beeinträchtigungen des Nervensystems bei neurologischen Störungen führen bei den Betroffenen zu Einschränkungen bei den Aktivitäten des täglichen Lebens. In jüngster Zeit werden im Bereich der Rehabilitation zahlreiche hochmoderne Verfahren zur Therapie unterschiedlichster neurologischer Beeinträchtigungen eingesetzt. Allerdings werden diese teilweise kostspieligen Verfahren häufig nur in Kliniken angeboten. Für die meisten Patienten mit neurologischen Störungen ist es schwierig, eine solche Klinik zu erreichen. Ziel der vorliegenden Übersichtsarbeit war es, einen neuen wissenschaftlichen Ansatz in der Neurorehabilitation zu entwickeln, der die funktionelle Erholung von Patienten nach neurologischen Störungen verbessert und sowohl in der Klinik als auch im häuslichen Umfeld angewandt werden kann. Das menschliche Gehirn ist ein Netzwerk, ein komplexes, integriertes System, das das Zusammenspiel von Milliarden von Einheiten koordiniert. In der grauen Substanz befinden sich die meisten Nervenzellkörper. Sie enthält die Bereiche des Gehirns und des Rückenmarks, die an der Muskelkontrolle, der Sinneswahrnehmung, dem Gedächtnis, den Emotionen, der Entscheidungsfindung und der Selbstkontrolle beteiligt sind. Die funktionellen Fähigkeiten eines Patienten ergeben sich aus den komplexen Interaktionen zwischen verschiedenen Hirn- und Rückenmarksbereichen und neuromuskulären Systemen. Zwar erfolgt die Verbindung vieler Hirnareale über die Fasern der weißen Substanz, doch könnte die funktionelle Erholung bei Patienten mit neurologischen Störungen auch durch Stimulation nicht motorischer Fähigkeiten bzw. die Verbesserung nicht motorischer Symptome, wie etwa motivationale, kognitive und sensorische Symptome neben motorischen Symptomen, begünstigt werden. Der aktuelle Behandlungsansatz basiert auf dem Grundprinzip der Vernetzung des Gehirns. Der Einsatz motorischer, sensorischer, motivationaler und kognitiver (MSMC) Interventionen im Rahmen der Rehabilitation kann die Neuroplastizität fördern und die funktionelle Erholung bei Patienten mit neurologischen Störungen maximieren. Zur Bestätigung unserer Theorien und Hypothesen sind experimentelle Studien dringend erforderlich.



Publication History

Received: 04 December 2021

Accepted: 24 December 2022

Article published online:
16 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Avanzino L, Pelosin E, Vicario C, Lagravinese G, Abbruzzese G, Martino D. Time Processing and Motor Control in Movement Disorders. Front Hum Neurosci 2016; 10: 6-31
  • 2 Pozo-Cruz B, Adsuar J, Parraca J, Pozo-Cruz J, Olivares P, Gusi N. Using Whole-Body Vibration Training in Patients Affected with Common Neurological Diseases: A Systematic Literature Review. The Journal of Alternative and Complementary Medicine 2012; 18: 29-41
  • 3 Dobkin B. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol 2009; 22: 563-569
  • 4 Evans J. Positive Psychology and Brain Injury Rehabilitation. Brain Impairment 2011; 12: 117-127
  • 5 Sibson F, Fox E. On The Causes Which Excite And Influence Respiration In Health And Disease. London: s.n.; 1850
  • 6 Rosenbaum D. Human Motor Control. San Diego, Calif: Acad. Press; 2008
  • 7 Ramachandran V. Encyclopedia Of The Human Brain. San Diego, Calif: Academic Press; 2002
  • 8 Franklin D, Wolpert D. Computational Mechanisms of Sensorimotor Control. Neuron. 2011; 72: 425-442
  • 9 Zis P, Hadjivassiliou M. Treatment of Neurological Manifestations of Gluten Sensitivity and Coeliac Disease. Curr Treat Options Neurol 2019; 21
  • 10 Keci A, Tani K, Xhema J. Role of Rehabilitation in Neural Plasticity. Open Access Maced J Med Sci 2019; 7: 1540-1547
  • 11 Linden C, Uhley J, Smith D, Bush M. The Effects of Mental Practice on Walking Balance in an Elderly Population. The Occupational Therapy Journal of Research 1989; 9: 155-169
  • 12 Barclay-Goddard R, Stevenson T, Thalman L, Poluha W. Mental Practice for Treating Upper Extremity Deficits in Individuals With Hemiparesis After Stroke. Stroke. 2011; 42: CD005950
  • 13 Pereira A, Huddleston D, Brickman A. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences 2007; 104: 5638-5643
  • 14 De Luca R, Russo M, Naro A. et al. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations. International Journal of Neuroscience 2018; 128: 791-796
  • 15 Rizzolatti G, Fogassi L. The mirror mechanism: recent findings and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences 2014; 369: 20130420
  • 16 Alashram A, Padua E, Hammash A, Lombardo M, Annino G. Effectiveness of virtual reality on balance ability in individuals with incomplete spinal cord injury: A systematic review. Journal of Clinical Neuroscience 2020; 72: 322-327
  • 17 Tillakaratne N, Mouria M, Ziv N, Roy R, Edgerton V, Tobin A. Increased expression of glutamate decarboxylase (GAD67) in feline lumbar spinal cord after complete thoracic spinal cord transection. J Neurosci Res 2000; 60: 219-230
  • 18 Radomski M, Latham C. Occupational Therapy For Physical Dysfunction. Philadelphia: Lippincott Williams & Wilkins; 2014: 614-674
  • 19 Annino G, Savalla S, Dasari J, Vinciguerra M. Impact of task oriented physical activity on improve hand motor control in stroke patients: An interventional comparative motor learning strategy. International Journal of Recent Scientific Research 2015; 6: 6623-6627
  • 20 Alashram A, Annino G, Mercuri N. Task-oriented Motor Learning in Upper Extremity Rehabilitation Post Stroke. Journal of Stroke Medicine 2019; 2: 95-104
  • 21 Alashram A, Padua E, Romagnoli C, Annino G. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: A systematic review. NeuroRehabilitation. 2019; 45: 471-481
  • 22 Fonseca Junior P, Souza P, Reis K, Filoni E. Home-based physiotherapy programmes for individuals with neurological diseases: systematic review. Fisioterapia em Movimento 2019; 32: 1-12
  • 23 Zilles K. Neuronal plasticity as an adaptive property of the central nervous system. Annals of Anatomy – Anatomischer Anzeiger 1992; 174: 383-391
  • 24 Pascual-Leone A, Freitas C, Oberman L. et al. Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI. Brain Topogr 2011; 24: 302-315
  • 25 Keller T, Just M. Structural and functional neuroplasticity in human learning of spatial routes. Neuroimage. 2016; 125: 256-266
  • 26 Mateos-Aparicio P, Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci 2019; 13
  • 27 Freed W, de Medinaceli L, Wyatt R. Promoting functional plasticity in the damaged nervous system. Science. 1985; 227: 1544-1552
  • 28 Patten A, Yau S, Fontaine C, Meconi A, Wortman R, Christie B. The Benefits of Exercise on Structural and Functional Plasticity in the Rodent Hippocampus of Different Disease Models. Brain Plasticity 2015; 1: 97-127
  • 29 Meyer D, Bonhoeffer T, Scheuss V. Balance and Stability of Synaptic Structures during Synaptic Plasticity. Neuron. 2014; 82: 430-443
  • 30 Ben Achour S, Pascual O. Glia: The many ways to modulate synaptic plasticity. Neurochem Int 2010; 57: 440-445
  • 31 Debanne D, Inglebert Y, Russier M. Plasticity of intrinsic neuronal excitability. Curr Opin Neurobiol 2019; 54: 73-82
  • 32 Grasselli G, Boele H, Titley H. et al. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning – specific memory traces. PLoS Biol 2020; 18: e3000596
  • 33 Sporns O. Structure and function of complex brain networks. Dialogues Clin Neuroaci 2013; 15: 247-262
  • 34 Fingelkurts A, Fingelkurts A, Kähkönen S. Functional connectivity in the brain—is it an elusive concept?. Neuroscience & Biobehavioral Reviews 2005; 28: 827-836
  • 35 Friston K. Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp 1994; 2: 56-78
  • 36 Sporns O. Network analysis, complexity, and brain function. Complexity. 2002; 8: 56-60
  • 37 Sporns O, Chialvo D, Kaiser M, Hilgateg C. Organization, development and function of complex brain networks. Trends Cogn Sci (Regul Ed) 2004; 8: 418-425
  • 38 Jiang G, Yin X, Li C. et al. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation. Neural Plast 2015; 2015: 1-10
  • 39 Snell R. Clinical Neuroanatomy For Medical Students. 7th ed.. Philidelphia: Lippincott Williams & Wilkins; 2009
  • 40 Klein S, Thorne B. Biological Psychology. New York, NY: Worth Pub.; 2007
  • 41 Hamner M, Möller T, Ransom B. Anaerobic Function of CNS White Matter Declines with Age. Journal of Cerebral Blood Flow & Metabolism 2010; 31: 996-1002
  • 42 Filley C. The Behavioral Neurology Of White Matter. Oxford: Oxford University Press; 2012
  • 43 Liu C, Chambers W. An Experimental study of the cortico-spinal system in the monkey (Macaca mulatta). The spinal pathways and preterminal distribution of degenerating fibers following discrete lesions of the pre- and postcentral gyri and bulbar pyramid. J Comp Neurol 1964; 123: 257-283
  • 44 Van der Fels I, te Wierike S, Hartman E, Elferink-Gemser M, Smith J, Visscher C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J Sci Med Sport 2015; 18: 697-703
  • 45 Padilla R, Domina A. Effectiveness of Sensory Stimulation to Improve Arousal and Alertness of People in a Coma or Persistent Vegetative State After Traumatic Brain Injury: A Systematic Review. American Journal of Occupational Therapy 2016; 70: 1-8
  • 46 Chen X, Liu F, Yan Z. et al. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine (Baltimore) 2018; 97: e13387
  • 47 Scalha T, Miyasaki E, Lima N, Borges G. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke. Arq Neuropsiquiatr 2011; 69: 624-629
  • 48 Park M. The Relationship between Sensory Processing Abilities and Gross and Fine Motor Capabilities of Children with Cerebral Palsy. Journal of The Korean Society of Physical Medicine 2017; 12: 67-74
  • 49 Kussoffsky A, Wadell I, Nilsson B. The relationship between sensory impairment and motor recovery in patients with hemiplegia. International Journal of Rehabilitation Research 1985; 8: 75
  • 50 Yeh T, Chang K, Wu C. The Active Ingredient of Cognitive Restoration: A Multicenter Randomized Controlled Trial of Sequential Combination of Aerobic Exercise and Computer-Based Cognitive Training in Stroke Survivors With Cognitive Decline. Arch Phys Med Rehabil 2019; 100: 821-827
  • 51 Özdemir F, Birtane M, Tabatabaei R, Kokino S, Ekuklu G. Comparing stroke rehabilitation outcomes between acute inpatient and nonintense home settings. Arch Phys Med Rehabil 2001; 82: 1375-1379
  • 52 Yoshida H, Lima F, Barreira J, Appenzeller S, Fernandes P. Is there a correlation between depressive symptoms and motor skills in post-stroke patients?. Arq Neuropsiquiatr 2019; 77: 155-160
  • 53 Kwok T, Lam K, Mak HO. Effectiveness of coordination exercise in improving cognitive function in older adults: a prospective study. Clin Interv Aging 2011; 261
  • 54 Chen P, Kwong P, Lai C, Ng S. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS ONE 2019; 14: e0216357
  • 55 Costanzo L. Physiology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011
  • 56 Sibson F, Fox E. On The Causes Which Excite And Influence Respiration In Health And Disease. London: The Transactions of the Provincial Medical and Surgical Association; 1850: 181-350
  • 57 Grillner S, Robertson B, Stephenson-Jones M. The evolutionary origin of the vertebrate basal ganglia and its role in action selection. J Physiol (Lond) 2013; 591: 5425-5431
  • 58 Schmidt R. Motor Control And Learning. Champaign, IL: Human Kinetics;; 2019
  • 59 Kane M, Bleckley M, Conway A, Engle R. A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General 2001; 130: 169-183
  • 60 Maxwell J, Masters R, Eves F. The role of working memory in motor learning and performance. Conscious Cogn 2003; 12: 376-402
  • 61 Cortese A, Rossi-Arnaud C. Working memory for ballet moves and spatial locations in professional ballet dancers. Appl Cogn Psychol 2010; 24: 266-286
  • 62 Liao C, Masters R. Analogy learning: A means to implicit motor learning. J Sports Sci 2001; 19: 307-319
  • 63 Waterman A, Atkinson A, Aslam S, Holmes J, Jaroslawska A, Allen R. Do actions speak louder than words? Examining children’s ability to follow instructions. Mem Cognit 2017; 45: 877-890
  • 64 Barreiros J, Figueiredo T, Godinho M. The contextual interference effect in applied settings. European Physical Education Review 2007; 13: 195-208
  • 65 Magill R, Hall K. A review of the contextual interference effect in motor skill acquisition. Hum Mov Sci 1990; 9: 241-289
  • 66 Moxley S. Schema. J Mot Behav 1979; 11: 65-70
  • 67 Linden C, Uhley J, Smith D, Bush M. The Effects of Mental Practice on Walking Balance in an Elderly Population. The Occupational Therapy Journal of Research 1989; 9: 155-169
  • 68 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. The Lancet Neurology 2009; 8: 741-754
  • 69 Alashram A, Annino G, Padua E. Mental practice combined with physical practice to enhance upper extremity functional ability post-stroke: A systematic review. Journal of Stroke Medicine 2020; 3: 51-61
  • 70 Page S, Peters H. Mental Practice. Stroke. 2014; 45: 3454-3460
  • 71 Roure R, Collet C, Deschaumes-Molinaro C, Delhomme G, Dittmar A, Vernet-Maury E. Imagery Quality Estimated by Autonomic Response Is Correlated to Sporting Performance Enhancement. Physiol Behav 1999; 66: 63-72
  • 72 Schmidt R, Wrisberg C. Motor Learning And Performance. Champaign Ill: Human Kinetics;; 2004
  • 73 McGuigan F. The effect of precision, delay, and schedule of knowledge of results on performance. J Exp Psychol 1959; 58: 79-84
  • 74 Schmidt R. Frequent Augmented Feedback Can Degrade Learning: Evidence and Interpretations. Tutorials in Motor Neuroscience 1991; 62: 59-75
  • 75 Salmoni A, Schmidt R, Walter C. Knowledge of results and motor learning: A review and critical reappraisal. Psychol Bull 1984; 95: 355-386
  • 76 Sunaryadi Y. The Role of Augmented Feedback on Motor Skill Learning. Proceedings of the 6th International Conference on Educational. Management, Administration and Leadership 2016; 14: 270-274
  • 77 Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cognitive Brain Research 1996; 3: 131-141
  • 78 Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res 1992; 91: 176-180
  • 79 Rizzolatti G, Craighero L. The Mirror-Neuron System. Annu Rev Neurosci 2004; 27: 169-192
  • 80 Rizzolatti G, Fadiga L, Fogassi L, Gallese V. Resonance Behaviors and Mirror Neurons. Arch Ital Biol 1999; 137: 85-100
  • 81 Cusack L, Del Mar C, Chalmers I, Gibson E, Hoffmann T. Educational interventions to improve people’s understanding of key concepts in assessing the effects of health interventions: a systematic review. Syst Rev 2018; 7: 1-12
  • 82 Niel-Asher S. The Concise Book Of Trigger Points. 3rd ed.. Lotus Publishing; 2014
  • 83 Nardone A, Schieppati M. Reflex contribution of spindle group Ia and II afferent input to leg muscle spasticity as revealed by tendon vibration in hemiparesis. Clinical Neurophysiology 2005; 116: 1370-1381
  • 84 Sheean G, McGuire J. Spastic Hypertonia and Movement Disorders: Pathophysiology, Clinical Presentation, and Quantification. PM&R 2009; 1: 827-833
  • 85 Burke D, Gillies J, Lance J. The quadriceps stretch reflex in human spasticity. Journal of Neurology, Neurosurgery & Psychiatry 1970; 33: 216-223
  • 86 Salazar A, Pinto C, Ruschel Mossi J, Figueiro B, Lukrafka J, Pagnussat A. Effectiveness of static stretching positioning on post-stroke upper-limb spasticity and mobility: Systematic review with meta-analysis. Ann Phys Rehabil Med 2019; 62: 274-282
  • 87 Annino G, Alashram A, Alghwiri A. et al. Effect of segmental muscle vibration on upper extremity functional ability poststroke. Medicine (Baltimore) 2019; 98: e14444
  • 88 Hall J, Guyton A. Guyton And Hall Textbook Of Medical Physiology. 12th ed.. Philadelphia: Saunders Elsevier; 2011: 690
  • 89 Purves D, Augustine G, Fitzpatrick D, Hall W, LaManita A, McNamara J. Neuroscience. 4th ed.. Sunderland (Mass.): Sinauer; 2008
  • 90 Stocco A, Lebiere C, Anderson J. Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychol Rev 2010; 117: 541-574
  • 91 Weyhenmeyer J, Gallman E. Rapid Review Neuroscience. Philadelphia, PA: Mosby; 2007: 102
  • 92 Fix J. Neuroanatomy. 4th ed.. Philadelphia: Lippincott Williams & Wilkins; 2008: 274-281
  • 93 Young C, Sonne J. Neuroanatomy, Basal Ganglia. Treasure Island (FL): StatPearls Publishing; 2018
  • 94 Rodriguez-Oroz M, Jahanshahi M, Krack P. et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. The Lancet Neurology 2009; 8: 1128-1139
  • 95 Andrews C, Burke D, Lance J. The response to muscle stretch and shortening in Parkinsonian rigidity. Brain. 1972; 95: 795-812
  • 96 Wolf U, Rapoport M, Schweizer T. Evaluating the Affective Component of the Cerebellar Cognitive Affective Syndrome. J Neuropsychiatry Clin Neurosci 2009; 21: 245-253
  • 97 Schmahmann J, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006; 129: 290-292
  • 98 Fine E, Ionita C, Lohr L. The History of the Development of the Cerebellar Examination. Semin Neurol 2002; 22: 375-384
  • 99 O'Sullivan S, Siegelman R. National Physical Therapy Examination Review & Study Guide. 19th ed.. Evanston, IL: TherapyEd; 2016. 172.
  • 100 Sunder S. Textbook Of Rehabilitation. New Delhi: Jaypee Brothers; 2004: 26
  • 101 Nardone A, Godi M, Artuso A, Schieppati M. Balance Rehabilitation by Moving Platform and Exercises in Patients With Neuropathy or Vestibular Deficit. Arch Phys Med Rehabil 2010; 91: 1869-1877
  • 102 Shumway-Cook A, Anson D, Haller S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients. Arch Phys Med Rehabil 1988; 69: 395-400
  • 103 Shaffer S, Harrison A. Aging of the Somatosensory System: A Translational Perspective. Phys Ther 2007; 87: 193-207
  • 104 Walker W. Motor impairment after severe traumatic brain injury: A longitudinal multicenter study. The Journal of Rehabilitation Research and Development 2007; 44: 975-982
  • 105 Peterson M, Greenwald B. Balance Problems After Traumatic Brain Injury. Arch Phys Med Rehabil 2015; 96: 379-380
  • 106 Peterka R. Sensorimotor Integration in Human Postural Control. J Neurophysiol 2002; 88: 1097-1118
  • 107 Alashram A, Annino G, Raju M, Padua E. Effects of physical therapy interventions on balance ability in people with traumatic brain injury: A systematic review. NeuroRehabilitation. 2020; 46
  • 108 Oxford dictionaries “Cognition.” Lexico Dictionaries | English https://www.lexico.com/definition/cognition. Published 2020. Accessed May 28, 2020
  • 109 Harvey P. Domains of cognition and their assessment. Dialogues Clin Neurosci 2019; 21: 227-237
  • 110 Buchman A, Yu L, Wilson R. et al. Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology. 2019; 92: e811-e822
  • 111 Fissler P, Küster O, Laptinskaya D, Loy L, von Arnim C, Kolassa I. Jigsaw Puzzling Taps Multiple Cognitive Abilities and Is a Potential Protective Factor for Cognitive Aging. Front Aging Neurosci 2018; 10: 1-11
  • 112 Schultz S, Larson J, Oh J. et al. Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer’s disease. Brain Imaging Behav 2015; 9: 729-736
  • 113 Anderson T. Vocabulary and the Brain: Evidence from Neuroimaging Studies. 2016
  • 114 Brain Health and Dance. Centers for Disease Control and Prevention https://www.cdc.gov/features/alzheimers-and-exercise/index.html. Published 2018. Accessed May 28, 2020
  • 115 Quak M, London R, Talsma D. A multisensory perspective of working memory. Front Hum Neurosci 2015; 9: 1-11
  • 116 Park D, Lodi-Smith J, Drew L. et al. The Impact of Sustained Engagement on Cognitive Function in Older Adults. Psychol Sci 2014; 25: 103-112
  • 117 Ritter S, Ferguson S. Happy creativity: Listening to happy music facilitates divergent thinking. PLoS ONE 2017; 12: e0182210
  • 118 Krantz J. Experiencing Sensation And Perception – Chapter 1: What Is Sensation And Perception?. SAGE; 2013: 16
  • 119 Winter R, Harrar V, Gozdzik M, Harris L. The relative timing of active and passive touch. Brain Res 2008; 1242: 54-58
  • 120 Roll J, Vedel J, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 1989; 76: 213-222
  • 121 Steyvers M, Levin O, Van Baelen M, Swinnen S. Corticospinal excitability changes following prolonged muscle tendon vibration. Neuroreport. 2003; 14: 2001-2004
  • 122 Walker H, Hall W, Hurst J. Deep Tendon Reflexes In The Clinical Methods : The History, Physical, And Laboratory Examinations. 3rd ed.. Boston: Butterworths; 1990
  • 123 Voss P, Thomas M, Cisneros-Franco J, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8: 1-11
  • 124 Annino G, Palazzo F, Lebone P. et al. The efficacy of plantar stimulation on human balance control. Somatosens Mot Res 2015; 32: 200-205
  • 125 Garland S, Hayes K. Effects of brushing on electromyographic activity and ankle dorsiflexion in hemiplegic subjects with foot drop. Physiotherapy Canada 1987; 39: 239-247
  • 126 Lazaro R, Reina-Guerra S, Quiben M. Umpherd's Neurological Rehabilitation. 7th ed.. Elsevier; 2019
  • 127 Guay F, Chanal J, Ratelle C, Marsh H, Larose S, Boivin M. Intrinsic, identified, and controlled types of motivation for school subjects in young elementary school children. British Journal of Educational Psychology 2010; 80: 711-735
  • 128 Deci E, Koestner R, Ryan R. A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychol Bull 1999; 125: 627-668
  • 129 Gottfried A. Academic intrinsic motivation in young elementary school children. J Educ Psychol 1990; 82: 525-538
  • 130 Bandura A. Self-efficacy mechanism in human agency. American Psychologist 1982; 37: 122-147
  • 131 Pintrich P, de Groot E. Motivational and self-regulated learning components of classroom academic performance. J Educ Psychol 1990; 82: 33-40
  • 132 Philips B, Wennberg P. The importance of therapy motivation for patients with substance use disorders. Psychotherapy. 2014; 51: 555-562
  • 133 Schmahmann J, Sherman J. The cerebellar cognitive affective syndrome. Brain. 1998; 121: 561-579