Synlett 2022; 33(05): 495-501
DOI: 10.1055/a-1733-6073
letter

Palladium-Catalyzed Thiocarbonylations with Triisopropylsilyl Thioethers

Yosuke Hosoya
,
Kota Mizoguchi
,
Honoka Yasukochi
,
Masahisa Nakada
This work was financially supported in part by JSPS KAKENHI Grant Number JP19H02725 and a Waseda University Grant for Special Research Projects.


Abstract

We have developed a palladium-catalyzed thiocarbonylation through the reaction of a σ-alkyl palladium intermediate with carbon monoxide and a triisopropylsilyl (TIPS) thioether. The use of CsF, (IPr)Pd(allyl)Cl [IPr =1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene], CO, and a TIPS thioether in THF are key to obtaining alkyl and aryl thioesters in high yields. The yield of the palladium-catalyzed thiocarbonylation depended on the structure of the substrate; indoline-2-one derivatives were formed faster than indoline derivatives. The reactions of benzoyl and hydrocinnamoyl fluorides with TIPSSPh and CsF also gave the corresponding thioesters.

Supporting Information



Publication History

Received: 20 November 2021

Accepted after revision: 07 January 2022

Accepted Manuscript online:
07 January 2022

Article published online:
02 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Holman KR, Stanko AM, Reisman SE. Chem. Soc. Rev. 2021; 50: 7891
    • 1b Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Eur. J. Org. Chem. 2021; 4566
    • 1c Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 1d Muzart J. Tetrahedron 2013; 69: 6735
    • 1e Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 1f Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 1g Poli G, Giambastiani G, Heumann A. Tetrahedron 2000; 56: 5959
    • 1h Grigg R, Sridharan V. J. Organomet. Chem. 1999; 576: 65
    • 2a Wei F, Wei L, Zhou L, Tung C.-H, Ma Y, Xu Z. Asian J. Org. Chem. 2016; 5: 971
    • 2b Vachhani DD, Butani HH, Sharma N, Bhoya UC. K. Shah A. K, Van der Eycken EV. Chem. Commun. 2015; 51: 14862
    • 3a Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 3233
    • 3b Xiao G, Chen L, Deng G, Liu J, Liang Y. Tetrahedron Lett. 2018; 59: 1836
  • 4 Hong Y, Liu W, Dong M, Chen X, Xu T, Tian P, Tong X. Org. Lett. 2019; 21: 5742
  • 5 Hosoya Y, Kobayashi I, Mizoguchi K, Nakada M. Org. Lett. 2019; 21: 8280
  • 6 Zhang Y, Negishi E. J. Am. Chem. Soc. 1989; 111: 3454
    • 7a Grigg R, Redpath J, Sridharan V, Wilson D. Tetrahedron Lett. 1994; 35: 4429
    • 7b Grigg R, MacLachlan W, Rasparini M. Chem. Commun. 2000; 2241
    • 7c Anwar U, Casaschi A, Grigg R, Sansano JM. Tetrahedron 2001; 57: 1361
    • 7d Grigg R, Martin W, Morris J, Sridharan V. Tetrahedron 2005; 61: 11380
    • 7e Ishikura M, Takahashi N, Yamada K, Yanada R. Tetrahedron 2006; 62: 11580
    • 7f Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Angew. Chem. Int. Ed. 2019; 58: 9225
  • 8 Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
    • 9a Evans P, Grigg R, Ramzan MI, Sridharan V, York M. Tetrahedron Lett. 1999; 40: 3021
    • 9b Dondas HA, Belveren S, Poyraz S, Grigg R, Kilner C, Ferrándiz-Saperas M, Selva E, Sansano JM. Tetrahedron 2018; 74: 6
    • 9c Liu H, Xiong Y, Chen Z. Asian J. Org. Chem. 2021; 10: 2351
  • 10 Grigg R, Major JP, Martin FM, Whittaker M. Tetrahedron Lett. 1999; 40: 7709
  • 11 Brown S, Clarkson S, Grigg R, Thomas WA, Sridharan V, Wilson DM. Tetrahedron 2001; 57: 1347
    • 12a Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 12b Marchese D, Larin EM, Mirabi B, Lautens M. Acc. Chem. Res. 2020; 53: 1605
    • 13a Hino T, Nakagawa M. Alkaloids (San Diego, CA U. S.) 1989; 34: 1
    • 13b Takano S, Ogasawara K. Alkaloids (San Diego, CA U. S.) 1989; 36: 225
  • 14 Jobst J, Hesse O. Justus Liebigs Ann. Chem. 1864; 129: 115
  • 15 Copéret C, Negishi EM. Org. Lett. 1999; 1: 165
  • 16 S-Phenyl 2-(1,3-Dimethyl-2-oxoindolin-3-yl)ethanethioate (2a);26 Typical Procedure A 10 mL test tube was charged with 1a (28.3 mg, 0.094 mmol, 1.0 equiv), CsF (21 mg, 0.141 mmol, 1.5 equiv), (IPr)Pd(allyl)Cl (5.4 mg, 0.0094 mmol, 0.1 equiv), TIPSSPh (38 mg, 0.141 mmol, 1.5 equiv), and anhyd THF (1.9 mL, 0.05 mol/L). The reaction mixture was thoroughly degassed and then stirred at 65 °C under CO. After 22 h, H2O (2 mL) was added to the mixture at r.t. and the aqueous layer was extracted with EtOAc (3 × 2 mL). The combined organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel, hexane–EtOAc (4:1)] to give a colorless oil; yield: 27.5 mg (94%). S-(2-Fluorophenyl) 2-(1,3-Dimethyl-2-oxoindolin-3-yl)ethanethioate (2e) Colorless oil; yield: 29.7 mg (84%); Rf = 0.16 (hexane–EtOAc, 4:1). 1H NMR (500 MHz, CDCl3): δ = 7.33–7.38 (m, 1 H), 7.27 (dd, J = 7.4, 6.8 Hz, 2 H), 7.19 (dd, J = 7.7, 6.8 Hz, 1 H), 7.05–7.11 (m. 3 H), 6.83 (d, J = 7.7 Hz, 1 H), 3.25–3.26 (m, 2 H), 3.22 (s, 3 H), 1.42 (s, 3 H). 13C NMR (500 MHz, CDCl3): δ = 191.7, 179.2, 162.0 (d, J C–F = 250.3 Hz), 143.5, 136.7, 132.2 (d, J C–F = 7.8 Hz ), 132.1 (d, J C–F = 7.8 Hz ), 128.4, 124.7 (d, J C–F = 3.6 Hz), 123.1, 122.6, 116.3 (d, J C–F = 22.7 Hz), 114.8 (d, J C–F = 17.9 Hz), 108.4, 49.9, 46.4, 26.6, 24.1. HRMS (ESI): m/z [M + Na]+ calcd for C18H16FNNaO2S: 352.0783; found: 352.0776.
  • 17 Lechuga-Eduardo H, Zarza-Acuña E, Romero-Ortega M. Tetrahedron Lett. 2017; 58: 3234
  • 18 Feng Y, Yang S, Zhao S, Zhang D.-P, Li X, Liu H, Dong Y, Sun F.-G. Org. Lett. 2020; 22:  6734
  • 19 Liu H, Li C, Qiu D, Tong X. J. Am. Chem. Soc. 2011; 133: 6187
    • 20a Pérez-Gómez M, Navarro L, Saura-Llamas I, Bautista D, Lautens M, García-López J.-A. Organometallics 2017; 36: 4465
    • 20b Franzoni I, Yoon H, García-López J.-A, Poblador-Bahamonde AI, Lautens M. Chem. Sci. 2018; 9: 1496
    • 20c Chen M, Wang X, Yang P, Kou X, Ren Z.-H, Guan Z.-H. Angew. Chem. Int. Ed. 2020; 59: 12199
  • 21 To obtain more information about the C2 carbonyl effect, the palladium-catalyzed thiocarbonylation of N-(2-iodophenyl)-N-methylacrylamide (1a′) with PhSTIPS was investigated, because the generated σ-alkyl palladium intermediate was expected to afford the desired thioester if the C2 carbonyl effect was operational. Unfortunately, however, N-(2-iodophenyl)-N-methyl-3-phenylthiopropanamide (1a′′) was obtained in 70% yield. See the Supporting Information for more details.
    • 22a Sakakura T, Chaisupakitsin M, Hayashi T, Tanaka M. J. Organomet. Chem. 1987; 334: 205
    • 22b Okano T, Harada N, Kiji J. Bull. Chem. Soc. Jpn. 1992; 65: 1741
  • 24 Ando W, Furuhata T, Tsumaki H, Sekiguchi A. Chem. Lett. 1982; 885
  • 25 L’Heureux A, Beaulieu F, Bennett C, Bill DR, Clayton S, LaFlamme F, Mirmehrabi M, Tadayon S, Tovell D, Couturier M. J. Org. Chem. 2010; 75: 3401
  • 26 Nambu H, Hata K, Matsugi M, Kita Y. Chem. Eur. J. 2005; 11: 719