Z Gastroenterol 2022; 60(02): e186-e227
DOI: 10.1055/a-1589-7854
Leitlinie

S3-Leitlinie – Diagnostik und Therapie biliärer Karzinome

Langversion 2.0 – Juni 2021 – AWMF-Registernummer: 032-053OL
M. Bitzer
1   Medizinische Klinik I, Universitätsklinikum Tübingen
,
S. Voesch
1   Medizinische Klinik I, Universitätsklinikum Tübingen
,
J. Albert
2   Abteilung für Gastroenterologie, Hepatologie und Endokrinologie, Robert-Bosch-Krankenhaus, Stuttgart
,
P. Bartenstein
3   Klinik und Poliklinik für Nuklearmedizin, LMU Klinikum, München
,
W. Bechstein
4   Klinik für Allgemein-, Viszeral-, Transplantations- und Thoraxchirurgie, Universitätsklinikum Frankfurt
,
S. Blödt
5   AWMF-Geschäftsstelle, Berlin
,
T. Brunner
6   Klinik für Strahlentherapie, Universitätsklinikum Magdeburg
,
F. Dombrowski
7   Institut für Pathologie, Universitätsmedizin Greifswald
,
M. Evert
8   Institut für Pathologie, Regensburg
,
M. Follmann
9   Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V., Berlin
,
C. La Fougère
10   Nuklearmedizin und Klinische Molekulare Bildgebung, Tübingen
,
P. Freudenberger
11   Clinical Guideline Services GmbH, Berlin
,
A. Geier
12   Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
,
E. Gkika
13   Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
,
M. Götz
14   Kliniken Böblingen
,
E. Hammes
15   Lebertransplantierte Deutschland e. V., Ansbach
,
T. Helmberger
16   Institut für Radiologie, Neuroradiologie und minimal-invasive Therapie, München Klinik Bogenhausen, München
,
R. T. Hoffmann
17   Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Dresden
,
W. P. Hofmann
18   Gastroenterologie am Bayerischen Platz, medizinisches Versorgungszentrum, Berlin
,
P. Huppert
19   Radiologisches Zentrum, Max Grundig Klinik, Bühl
,
A. Kautz
20   Deutsche Leberhilfe e.V., Köln
,
G. Knötgen
21   Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
,
J. Körber
22   Klinik Nahetal, Fachklinik für onkologische Rehabilitation und Anschlussrehabilitation, Bad Kreuznach
,
D. Krug
23   Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel
,
F. Lammert
24   Medizinische Hochschule Hannover
,
H. Lang
25   Klinik für Allgemein-, Viszeral und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
,
T. Langer
26   Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V., Berlin
,
P. Lenz
27   Universitätsklinikum Münster, Zentrale Einrichtung Palliativmedizin, Münster
,
A. Mahnken
28   Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
,
A. Meining
29   Medizinische Klinik und Poliklinik II des Universitätsklinikums Würzburg
,
O. Micke
30   Klinik für Strahlentherapie und Radioonkologie, Franziskus Hospital Bielefeld
,
S. Nadalin
31   Universitätsklinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Tübingen
,
H. P. Nguyen
32   Humangenetik, Ruhr-Universität, Bochum
,
J. Ockenga
33   Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen
,
K. Oldhafer
34   Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Semmelweis Universität, Asklepios Campus Hamburg
,
P. Paprottka
35   Abteilung für interventionelle Radiologie, Klinikum rechts der Isar der Technischen Universität München
,
K. Paradies
36   Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
,
P. Pereira
37   Abteilung für interventionelle Radiologie, Klinikum rechts der Isar der Technischen Universität München
,
T. Persigehl
38   Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
,
M. Plauth
39   Städtisches Klinikum Dessau
,
R. Plentz
40   Klinikum Bremen-Nord, Innere Medizin, Bremen
,
J. Pohl
41   Interventionelles Endoskopiezentrum und Schwerpunkt Gastrointestinale Onkologie, Asklepios Klinik Altona, Hamburg
,
J. Riemer
42   Lebertransplantierte Deutschland e. V., Bretzfeld
,
P. Reimer
43   Institut für diagnostische und interventionelle Radiologie, Städtisches Klinikum Karlsruhe gGmbH, Karlsruhe
,
J. Ringwald
44   Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen
,
U. Ritterbusch
45   Hospizarbeit am Universitätsklinikum Essen
,
E. Roeb
46   Medizinische Klinik II, Universitätsklinikum Gießen und Marburg GmbH, Gießen
,
B. Schellhaas
47   Medizinische Klinik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
,
P. Schirmacher
48   Pathologisches Institut, Universitätsklinikum Heidelberg
,
I. Schmid
49   Zentrum Pädiatrische Hämatologie und Onkologie, Dr. von Haunersches Kinderspital, Klinikum der Universität München
,
A. Schuler
50   Medizinische Klinik, Alb Fils Kliniken GmbH, Göppingen
,
D. von Schweinitz
51   SRH Wilhelm Löhe Hochschule, Fürth
,
D. Seehofer
52   Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
,
M. Sinn
53   Medizinische Klinik II, Universitätsklinikum Hamburg-Eppendorf
,
A. Stein
54   Hämatologisch-Onkologischen Praxis Eppendorf, Hamburg
,
A. Stengel
55   Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen
,
N. Steubesand
56   Clinical Guideline Services GmbH, Kiel
,
C. Stoll
57   Klinik Herzoghöhe Bayreuth, Bayreuth
,
A. Tannapfel
58   Institut für Pathologie der Ruhr-Universität Bochum am Berufsgenossenschaftlichen Universitätsklinikum Bergmannsheil, Bochum
,
A. Taubert
59   Kliniksozialdienst, Universitätsklinikum Heidelberg, Bochum
,
J. Trojan
60   Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
,
I. van Thiel
61   Deutsche Leberhilfe e.V., Köln
,
R. Tholen
62   Deutscher Verband für Physiotherapie e. V., Köln
,
A. Vogel
63   Klinik für Gastroenterologie, Hepatologie, Endokrinologie der Medizinischen Hochschule Hannover, Hannover
,
T. Vogl
64   Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt
,
H. Vorwerk
65   Klinik für Strahlentherapie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
,
F. Wacker
66   Institut für Diagnostische und Interventionelle Radiologie der Medizinischen Hochschule Hannover, Hannover
,
O. Waidmann
67   Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
,
H. Wedemeyer
68   Klinik für Gastroenterologie, Hepatologie und Endokrinologie Medizinische Hochschule Hannover, Hannover
,
H. Wege
69   Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
D. Wildner
70   Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Lauf an der Pegnitz
,
C. Wittekind
71   Institut für Pathologie, Universitätsklinikum Leipzig, Leipzig
,
M. A. Wörns
72   Medizinische Klinik und Poliklinik, Universitätsklinikum Mainz, Mainz
,
P. Galle
72   Medizinische Klinik und Poliklinik, Universitätsklinikum Mainz, Mainz
,
N. Malek
73   Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
› Author Affiliations

1. Informationen zu dieser Leitlinie

1.1. Herausgeber

Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), der Deutschen Krebsgesellschaft e. V. (DKG) und der Deutschen Krebshilfe (DKH).


#

1.2. Federführende Fachgesellschaft(en)

Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten

Zoom Image

#

1.3. Finanzierung der Leitlinie

Diese Leitlinie wurde von der Deutschen Krebshilfe im Rahmen des Leitlinienprogramms Onkologie gefördert.


#

1.4. Kontakt

Office Leitlinienprogramm Onkologie
c/o Deutsche Krebsgesellschaft e. V.
Kuno-Fischer-Straße 8
14 057 Berlin

leitlinienprogramm@krebsgesellschaft.de
www.leitlinienprogramm-onkologie.de


#

1.5. Zitierweise

Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karziome, Langversion 2.0, Juni 2021, AWMF Registernummer: 032/-053OL, https://www.leitlinienprogramm-onkologie.de/leitlinien/hepatozellulaeres-karzinom-hcc/ (Zugriff am: TT.MM.JJJJ)


#

1.6. Besonderer Hinweis

Die Medizin unterliegt einem fortwährenden Entwicklungsprozess, sodass alle Angaben, insbesondere zu diagnostischen und therapeutischen Verfahren, immer nur dem Wissensstand zur Zeit der Drucklegung der Leitlinie entsprechen können. Hinsichtlich der angegebenen Empfehlungen zur Therapie und der Auswahl sowie Dosierung von Medikamenten wurde die größtmögliche Sorgfalt beachtet. Gleichwohl werden die Benutzer aufgefordert, die Beipackzettel und Fachinformationen der Hersteller zur Kontrolle heranzuziehen und im Zweifelsfall einen Spezialisten zu konsultieren. Fragliche Unstimmigkeiten sollen bitte im allgemeinen Interesse der OL-Redaktion mitgeteilt werden.

Der Benutzer selbst bleibt verantwortlich für jede diagnostische und therapeutische Applikation, Medikation und Dosierung.

In dieser Leitlinie sind eingetragene Warenzeichen (geschützte Warennamen) nicht besonders kenntlich gemacht. Es kann also aus dem Fehlen eines entsprechenden Hinweises nicht geschlossen werden, dass es sich um einen freien Warennamen handelt.

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt. Jede Verwertung außerhalb der Bestimmung des Urhebergesetzes ist ohne schriftliche Zustimmung der OL-Redaktion unzulässig und strafbar. Kein Teil des Werks darf in irgendeiner Form ohne schriftliche Genehmigung der OL-Redaktion reproduziert werden. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung, Nutzung und Verwertung in elektronischen Systemen, Intranets und dem Internet.

In dieser Leitlinie wird aus Gründen der Lesbarkeit die männliche Form verwendet, dessenungeachtet beziehen sich die Angaben auf Angehörige aller Geschlechter.


#

1.7. Ziele des Leitlinienprogramms Onkologie

Die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V., die Deutsche Krebsgesellschaft e. V. und die Deutsche Krebshilfe haben sich mit dem Leitlinienprogramm Onkologie (OL) das Ziel gesetzt, gemeinsam die Entwicklung und Fortschreibung und den Einsatz wissenschaftlich begründeter und praktikabler Leitlinien in der Onkologie zu fördern und zu unterstützen. Die Basis dieses Programms beruht auf den medizinisch-wissenschaftlichen Erkenntnissen der Fachgesellschaften und der DKG, dem Konsens der medizinischen Fachexperten, Anwender und Patienten sowie auf dem Regelwerk für die Leitlinienerstellung der AWMF und der fachlichen Unterstützung und Finanzierung durch die Deutsche Krebshilfe. Um den aktuellen Stand des medizinischen Wissens abzubilden und den medizinischen Fortschritt zu berücksichtigen, müssen Leitlinien regelmäßig überprüft und fortgeschrieben werden. Die Anwendung des AWMF-Regelwerks soll dabei Grundlage zur Entwicklung qualitativ hochwertiger onkologischer Leitlinien sein. Da Leitlinien ein wichtiges Instrument der Qualitätssicherung und des Qualitätsmanagements in der Onkologie darstellen, sollten sie gezielt und nachhaltig in den Versorgungsalltag eingebracht werden. So sind aktive Implementierungsmaßnahmen und auch Evaluationsprogramme ein wichtiger Bestandteil der Förderung des Leitlinienprogramms Onkologie. Ziel des Programms ist es, in Deutschland professionelle und mittelfristig finanziell gesicherte Voraussetzungen für die Entwicklung und Bereitstellung hochwertiger Leitlinien zu schaffen. Diese hochwertigen Leitlinien dienen nicht nur dem strukturierten Wissenstransfer, sondern können auch in der Gestaltung der Strukturen des Gesundheitssystems ihren Platz finden. Zu erwähnen sind in diesem Zusammenhang evidenzbasierte Leitlinien als Grundlage zum Erstellen und Aktualisieren von Disease-Management-Programmen oder die Verwendung von aus Leitlinien extrahierten Qualitätsindikatoren im Rahmen der Zertifizierung von Organtumorzentren.


#

1.8. Weitere Dokumente zu dieser Leitlinie

Bei diesem Dokument handelt es sich um die Langversion der S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome“. Neben der Langversion wird es folgende ergänzende Dokumente zu dieser Leitlinie geben:

  • Kurzversion der Leitlinie

  • Laienversion (Patientenleitlinie)

  • Leitlinienreport zum Erstellungsprozess der Leitlinie

  • Evidenztabellen

Diese Leitlinie und alle Zusatzdokumente sind über die folgenden Seiten zugänglich.

Die Leitlinie ist außerdem in der App des Leitlinienprogramms Onkologie enthalten.

Weitere Informationen unter: https://www.leitlinienprogramm-onkologie.de/app/


#

1.9. Zusammensetzung der Leitliniengruppe

1.9.1. Koordination und Redaktion

Prof. Dr. Nisar P. Malek
Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen

Prof. Dr. Michael Bitzer
Stellvertretener Ärztlicher Direktor Medizinische Klinik Universitätsklinikum Tübingen

Prof. Dr. Peter R. Galle
Ärztlicher Direktor Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Sabrina Voesch
Ärztin in Weiterbildung Medizinische Klinik Universitätsklinikum Tübingen


#

1.9.2. Beteiligte Fachgesellschaften und Organisationen

In [Tab. 1] sind die an der Leitlinienerstellung beteiligten medizinischen Fachgesellschaften und sonstigen Organisationen sowie deren mandatierte Vertreter aufgeführt.

Tab. 1

Beteiligte Fachgesellschaften und Organisationen.

Beteiligte Fachgesellschaften und Organisationen

Mandatsträger

Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV)

Oldhafer K., Seehofer D. (Stellv.)

Deutsche Gesellschaft für Chirurgie (DGCH)

Lang H.

Deutsche Gesellschaft für Ernährungsmedizin (DGEM)

Plauth M., Ockenga J. (Stellv.)

Deutsche Gesellschaft für Endoskopie und bildgebende Verfahren (DGE-BV)

Meining A.

Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO)

Sinn M.

Deutsche Gesellschaft für Innere Medizin (DGIM)

Bitzer M., Trojan J.

Deutsche Gesellschaft für interventionelle Radiologie und minimalinvasive Therapie (DeGIR)

Pereira P., Mahnken A. (Stellv.), Huppert P. (Stellv.)

Deutsche Gesellschaft für Nuklearmedizin (DGN)

Bartenstein P., La Fougère Ch. (Stellv.)

Deutsche Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH)

Schmid I., v. Schweinitz D. (Stellv.)

Deutsche Gesellschaft für Palliativmedizin (DGPall)

Lenz P.

Deutsche Gesellschaft für Pathologie (DGP)

Schirmacher P., Evert M.

Berufsverband deutscher Pathologen (BDP)

Schirmacher P., Evert M.

Deutsche Gesellschaft für Radioonkologie (DEGRO)

Vorwerk, H., Krug D. (Stellv.)

Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Schuler, A., Wildner D. (Stellv.)

Deutscher Verband für Physiotherapie (ZKV)

Tholen, R.

Deutsche Röntgengesellschaft e. V. (DRG)

Vogl, T., Paprottka P., Wacker F., Helmberger T.

Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS)

Malek N., Galle P., Götz M., Lammert F., Plentz R.

Deutsche Transplantationsgesellschaft (DTG)

Nadalin S.

Deutsche Gesellschaft für Humangenetik (GfH)

Nguyen H. P.

Deutsche Leberhilfe e. V.

van Thiel I., Kautz A. (Stellv.)

Deutsche Leberstiftung

Schirmacher P.

Lebertransplantierte Deutschland e. V.

Hammes E. bis 10.08.2020

Riemer J. ab 11.08.2020

Arbeitsgemeinschaft Internistische Onkologie (AIO)

Vogel A., Wege H.

Arbeitsgemeinschaft Onkologische Pathologie

Dombrowski F.

Arbeitsgemeinschaft Radiologische Onkologie (ARO)

Brunner T., Gkika E. (Stellv.)

Arbeitsgemeinschaft Tumorklassifikation in der Onkologie (ATO)

Tannapfel A., Wittekind Ch. (Stellv.)

Arbeitsgemeinschaft Supportive Maßnahmen in der Onkologie (AGSMO)

Stein A.

Arbeitsgemeinschaft Onkologische Rehabilitation und Sozialmedizin (AGORS)

Körber J.

Chirurgische Arbeitsgemeinschaft Onkologie (CAO-V)

Bechstein W.

Arbeitsgemeinschaft Psychoonkologie (PSO)

Stengel, A., Ringwald J. (Stellv.)

Konferenz Onkologischer Kranken- und Kinderkrankenpflege (KOK)

Knötgen G., Paradies K. (Stellv.)

Arbeitsgemeinschaft Palliativmedizin (APM)

Ritterbusch U.

Arbeitsgemeinschaft Bildgebung in der Onkologie (ABO)

Persigehl Th.

Arbeitsgemeinschaft Prävention und Integrative Medizin in der Onkologie (AG PRIO)

Stoll Ch., Micke O. (Stellv.)

Arbeitsgemeinschaft Soziale Arbeit in der Onkologie (ASO)

Taubert A.

Außerdem wurden folgende Fachgesellschaften für den Leitlinienprozess angeschrieben, diese haben jedoch keinen Mandatsträger benannt:

  • Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin

  • Deutsche Gesellschaft für Pflegewissenschaft e. V.

  • Arbeitsgemeinschaft Pädiatrische Onkologie

  • Arbeitsgemeinschaft Onkologische Thoraxchiurgie

  • Deutsche Gesellschaft für Ernährung e. V.

  • Deutsche Gesellschaft für Klinische Chemie und Laboratoriumsmedizin ([Tab. 2], [3])

Tab. 2

Arbeitsgruppen und deren Mitglieder.

Arbeitsgruppe

Mitglieder der Arbeitsgruppe (AG-Leiter hervorgehoben)

AG I. Risikofaktoren, Prävention und Früherkennung

Trojan J., Schuler A., van Thiel I., Kautz A., Wedemeyer H., Lammert F., Roeb E., Geier A., Wildner D., Hofmann, W. P., Schmid I.

AG II.I Histopathologische und molekulare Diagnostik

Schirmacher P, Nguyen H. P., Dombrowski F., Evert M., Tannapfel A.

AG II.II Bildgebende Diagnostik

Götz M., Paprottka P., Persigehl T., Vogl T.J., Meining A., Wacker F., Pohl J., Reimer P., Schellhaas B.

AG III.I Operative und Interventionelle Therapieverfahren

Nadalin S., Pereira P., Bechstein W., Oldhafer K., Lang H., Bartenstein P., Vorwerk H., Brunner T., Hammes E., Vogel A., Helmberger T., Seehofer D., La Fougère Ch., Albert J., Hoffmann R.-T., Mahnken A., Huppert P., Gkika E., Krug D.

AG III.II Systemtherapie

Bitzer M., Galle P., Sinn M., Stein A., Plentz R., Schmid I., Wörns M.-A., Wege H.

AG IV Supportivtherapie

Lenz P., Ritterbusch U., Tholen R., Körber J., Stoll Ch., Taubert A., Stengel A., Knötgen G., Plauth M., Waidmann O.

Tab. 3

Beteiligte Experten.

Beteiligte Experten

Arbeitsgruppe

Wedemeyer, H.

AG I Risikofaktoren, Prävention und Früherkennung

Roeb, E.

AG I Risikofaktoren, Prävention und Früherkennung

Geier, A.

AG I Risikofaktoren, Prävention und Früherkennung

Pohl, J.

AG II. II Bildgebende Diagnostik

Reimer, P.

AG II. II Bildgebende Diagnostik

Schellhaas, B.

AG II. II Bildgebende Diagnostik

Albert, J.

AG III.I. Operative und Interventionelle Therapieverfahren

Hoffmann, R.-T.

AG III.I. Operative und Interventionelle Therapieverfahren

Hofmann, W. P.

AG I Risikofaktoren, Prävention und Früherkennung

Wörns, M.-A.

AG III.II. Systemtherapie

Waidmann, O.

AG IV. Supportivtherapie

Die Zuordnung der beteiligten Mandatsträger und Experten finden Sie in den [Tab. 2], [3].


#

1.9.3. Patientenbeteiligung

Die Leitlinie wurde unter direkter Beteiligung von 4 Patientenvertretern erstellt.

Herr Ingo van Thiel, Herr Achim Kautz und Frau Elke Hammes waren von Beginn an in die Erstellung der Leitlinie eingebunden und nahmen mit eigenem Stimmrecht an der Konsensuskonferenz teil. Herr Kautz war der Stellvertreter von Herrn Thiel und hat daher nicht abgestimmt. Frau Riemer ersetzte Frau Hammes ab der Videokonsensuskonferenz 08/2020.


#

1.9.4. Methodische Begleitung

  1. Durch das Leitlinienprogramm Onkologie:

    • Dr. med. Markus Follmann, MPH, MSc (OL Office c/o Deutsche Krebsgesellschaft)

    • Thomas Langer, Dipl.-Soz.-Wiss. (OL Office c/o Deutsche Krebsgesellschaft)

  2. Durch die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.:

    • Dr. rer. medic. Susanne Blödt, MScPH (AWMF-IMWI)

  3. Durch die Firma Clinical Guideline Service – User Group:

    • Dr. Nadine Steubesand

    • Dr. Paul Freudenberger

  4. Durch die DGVS

    • Pia Lorenz

    • PD Dr. med. Petra Lynen Jansen


#
#

1.10. Verwendete Abkürzungen

Abkürzung

Erläuterung

3D-CRT

Three-dimensional Conformal Radiation Therapy

5-FU

5-Fluorouracil

AASLD

American Association for the Study of Liver Diseases

ACG

American College of Gastroenterology

AFIP

Armed Forces Institute of Pathology

AFP

Alpha-Fetoprotein

AFP-L3

Lektin reaktives Alpha-Fetoprotein

AG

Arbeitsgruppe

ALT

Alanin-Aminotransferase

APASL

Asian Pacific Association for the Study of the Liver

APRI

AST/Thrombozyten-Ratio-Index

ARFI

Acoustic Radiation Force Impulse Imaging

AST

Aspartat-Aminotransferase

ATG

Antithymozytenglobulin

AUC

Area under the Curve

AWMF

Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.

ÄZQ

Ärztliches Zentrum für Qualität in der Medizin

BÄK

Bundesärztekammer

BCLC

Barcelona Clinic Liver Cancer

Bds

Beiderseits

BilIN

Biliäre intraepitheliale Neoplasie

BMI

Body-Mass-Index

BSC

Best Supportive Care

BSG

British Society of Gastroenterology

CA 19-9

Carbohydrate-Antigen 19-9

CCA

Cholangiokarzinom

iCCA

Intrahepatisches Cholangiokarzinom

dCCA

Distales Cholangiokarzinom

eCCA

Extrahepatisches Cholangiokarzinom

pCCA

Perihiläres Cholangiokarzinom

CD

Cluster of Differentiation

CEUS

Kontrastmittel-Ultraschall

CI

Konfidenzintervall

CIPN

Chemotherapie-induzierte periphere Neuropathie

CLIP

Cancer of the Liver Italian Program

CNI

Calcineurininhibitor

CR

Complete Remission

CT

Computertomografie

CTCEA

Common Terminology Criteria for Adverse Events

CTLA-4

Cytotoxic T-lymphocyte-associated Protein 4

CU-HCC

Chinese University-HCC (Risikoscore)

CUP

Cancer of Unkown Primary

DAAD

Direct-acting antiviral Drugs

DCP

des-Gamma-Carboxyprothrombin

DGCH

Deutsche Gesellschaft für Chirurgie

DGEM

Deutsche Gesellschaft für Ernährungsmedizin

DGVS

Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten

DHC

Ductus Choledochus

DKG

Deutsche Krebsgesellschaft e. V.

DKH

Deutsche Krebshilfe e. V.

EASL

European Association for the Study of the Liver

ECOG

Eastern Cooperative Oncology Group

EG

Empfehlungsgrad, A = starke Empfehlung, B = Empfehlung, 0 = offene Empfehlung

EK

Expertenkonsens

ELTR

European Liver Transplant Registry

EORTC

European Organisation for Research and Treatment of Cancer

EORTIC-QLQ

European Organisation for Research and Treatment of Cancer – Quality of Life Questionnaire

EQD2

Equivalenzdosis von 2 Gy

ERC(P)

Endoskopische retrograde Cholangio(pankreatiko)grafie

ESCULAP

Erlanger Synopsis for Contrast-enhanced Ultrasound for Liver Lesion Assessment in Patients at Risk

ESMO

European Society of Medical Oncology

ETC

Extended Toronto Criteria

EUS-(FNA)

Endosonografischer Ultraschall – (Feinnadelaspiration)

FACT-H

Functional Assessment of Cancer Therapy- Hepatobiliary

FDG-PET

Fluordeoxyglukose-Positronen-Emissionstomografie

FIB-4

Fibrosis-4

GAG-HCC

Guide with Age, Gender, HBV DNA, Core Promoter Mutations and Cirrhosis-HCC

GB-CA

Gallenblasenkarzinom

Gd-DTPA

Gadolinium-Diethylene-Triamine Pentaacetic Acid

Gd-EOB-DTPA

Gadolinium-Ethoxybenzyl-Diethylentriamin-Penta-Essigsäure

GEKID

Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V.

G-I-N

Guidelines International Network

GLOBOCAN

Global Cancer Incidence, Mortality and Prevalence

GOT

Glutamat-Oxalacetat-Transaminase

GPT

Glutamat-Pyruvat-Transaminase

HAI

Hepatische arterielle Infusion

HBsAg

Hepatitis-B-surface-Antigen

HBeAg

Hepatitis-B-envelope-Antigen

HBV

Hepatitis B

HCC

Hepatozelluläres Karzinom

HCV

Hepatitis C

HepPar1

Hepatocyte Paraffin 1

HR

Hazard Ratio

HSP70

Hitzeschockprotein 70

hTERT

Human Telomerase Reverse Transcriptase

ICCR

International Collaboration on Cancer Reporting

ICD

International Statistical Classification of Diseases and Related Health Problems

IGRT

Image Guided Radiotherapy

ILCA

International Liver Cancer Association

IPMN

Intraduktale papillär-muzinösen Neoplasie

IRE

Irreversible Elektroporation

IQWiG

Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen

ITT

Intention to Treat

JIS

Japan Integrated Staging Score

KASL

Korean Association for the Study of the Liver

LA

Leitlinienadaptation

LAASL

Latin American Association for the Study of the Liver (LAASL)

LiMax

Maximum liver function capacity

LiRADS

Liver Imaging Reporting and Data System

LL

Leitlinie

LoE

Level of Evidence

LTx

Lebertransplantation

MARS

Molecular-Adsorbent-Recirculating-System

MCN

Muzinös-zystische Neoplasie

MRCP

Magnetresonanz-Cholangiopankreatikografie

MR(T)

Magnetresonanz(tomografie)

MWA

Mikrowellenablation

NAFLD

Non-alcoholic fatty Liver Disease

NASH

Nichtalkoholische Steatohepatitis

NCI

National Cancer Institute

NCCN

The National Comprehensive Cancer Network

NGC

National Guideline Clearinghouse

NICE

National Institute for Health and Clinical Excellence

NRS

Nutrition Risk Screening

NT

Nicht transplantabel

OL

Leitlinienprogramm Onkologie

OP

Operation

ORN

Osteoradionekrose

OS

Overall Survival

PBC

Primär biliäre Zirrhose

PBD

Präoperative biliäre Drainage

PD

Progressive Disease

PDT

Photodynamische Therapie

PEI/PAI

Perkutane Ethanol Injektion

PET

Positronen-Emissions-Tomografie

PFS

Progression Free Survival

PICO

Population Intervention Comparison Outcome

PR

Partial Remission

PS

Progressive Disease

PSC

Primär sklerosierende Cholangitis

PV

Portalvene

PZK

Patientenzentrierte Kommunikation

QI

Qualitätsindikatoren

QoL

Quality of Life

RFA

Radiofrequenzablation

iRFA

Intraduktale Radiofrequenzablation

RILD

Radiation induced Liver Disease

RR

Relatives Risiko

SBRT

Stereotactic Body Radiotherapy

SD

Stable Disease

SEOM

Spanish Society of Medical Oncology

SEMS

Selbstexpandierender Metallstent

SGA

Subjective Global Assessment

SGB

Sozialgesetzbuch

SR

Systematische Recherche

STIKO

Ständige Impfkomission

SVR

Substained Virological Response

TACE

Transarterielle Chemoembolisation

DEB-TACE

Drug-eluting Bead TACE

TARE

Transarterielle Radioembolisation

TNM

Tumor Nodus Metastase

TTD

Time to Deterioration

TTP

Time to Progression

UICC

Union for International Cancer Control

UCSF

University of California, San Francisco

UNOS

United Network of Organ Sharing

US

Ultraschall

VEGF(R)

Vascular Endothelial Growth Factor (Receptor)

WHO

Wold Health Organisation


#

Publication History

Article published online:
11 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Howick J. et al The 2011 Oxford CEBM Evidence Levels of Evidence (Introductory Document). Available from: 2011 http://www.cebm.net/index.aspx?o=5653
  • 2 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften – Ständige Kommission L. AWMF-Regelwerk „Leitlinien“. 2012 [cited 09.12.2013; Available from: 1. Auflage. http://www.awmf.org/leitlinien/awmf-regelwerk/awmf-regelwerk.html
  • 3 Atchison EA. et al. Risk of cancer in a large cohort of U.S. veterans with diabetes. Int J Cancer 2011; 128 (03) 635-643
  • 4 de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. Liver Int 2012; 32 (03) 441-448
  • 5 El-Serag HB. et al. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of U.S. veterans. Hepatology 2009; 49 (01) 116-123
  • 6 Huang Y. et al. Smoking and risk of cholangiocarcinoma: a systematic review and meta-analysis. Oncotarget 2017; 8 (59) 100570-100581
  • 7 Jing W. et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur J Cancer Prev 2012; 21 (01) 24-31
  • 8 Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol 2012; 57 (01) 69-76
  • 9 Wongjarupong N. et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol 2017; 17 (01) 149
  • 10 Park JY. et al. Long-term follow up of gallbladder polyps. J Gastroenterol Hepatol 2009; 24 (02) 219-222
  • 11 Nagaraja V, Eslick GD. Systematic review with meta-analysis: the relationship between chronic Salmonella typhi carrier status and gall-bladder cancer. Aliment Pharmacol Ther 2014; 39 (08) 745-750
  • 12 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383: 2168-2179
  • 13 Rizvi S. et al. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15 (02) 95-111
  • 14 Valle JW. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27 (Suppl. 05) v28-v37
  • 15 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145 (06) 1215-1229
  • 16 Kamsa-ard S. et al. Risk Factors for Cholangiocarcinoma in Thailand: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2018; 19 (03) 605-614
  • 17 Qian MB. et al. Clonorchiasis. Lancet 2016; 387: 800-810
  • 18 Qian MB, Zhou XN. Global burden of cancers attributable to liver flukes. Lancet Glob Health 2017; 5 (02) e139
  • 19 You MS. et al. Natural Course and Risk of Cholangiocarcinoma in Patients with Recurrent Pyogenic Cholangitis: A Retrospective Cohort Study. Gut Liver 2019; 13 (03) 373-379
  • 20 Ten Hove A. et al. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg 2018; 105 (05) 482-490
  • 21 Fahrner R, Dennler SG, Inderbitzin D. Risk of malignancy in Caroli disease and syndrome: A systematic review. World J Gastroenterol 2020; 26 (31) 4718-4728
  • 22 Claessen MM. et al. High lifetime risk of cancer in primary sclerosing cholangitis. J Hepatol 2009; 50 (01) 158-164
  • 23 Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology 2011; 54 (01) 173-184
  • 24 McGee EE. et al. Smoking, Alcohol, and Biliary Tract Cancer Risk: A Pooling Project of 26 Prospective Studies. J Natl Cancer Inst 2019; 111 (12) 1263-1278
  • 25 Petrick JL. et al. Body Mass Index, Diabetes and Intrahepatic Cholangiocarcinoma Risk: The Liver Cancer Pooling Project and Meta-analysis. Am J Gastroenterol 2018; 113 (10) 1494-1505
  • 26 Clements O. et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J Hepatol 2020; 72 (01) 95-103
  • 27 Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol 2019; 8 (04) 31
  • 28 Rawla P. et al. Epidemiology of gallbladder cancer. Clin Exp Hepatol 2019; 5 (02) 93-102
  • 29 Kratzer W. et al. [Gallbladder polyps: prevalence and risk factors]. Ultraschall Med 2011; 32 (Suppl. 01) S68-S73
  • 30 Schnelldorfer T. Porcelain gallbladder: a benign process or concern for malignancy?. J Gastrointest Surg 2013; 17 (06) 1161-1168
  • 31 DesJardins H. et al. Porcelain Gallbladder: Is Observation a Safe Option in Select Populations?. J Am Coll Surg 2018; 226 (06) 1064-1069
  • 32 Patel S. et al. Hyalinizing cholecystitis and associated carcinomas: clinicopathologic analysis of a distinctive variant of cholecystitis with porcelain-like features and accompanying diagnostically challenging carcinomas. Am J Surg Pathol 2011; 35 (08) 1104-1113
  • 33 Gutt C. et al. [Updated S3-Guideline for Prophylaxis, Diagnosis and Treatment of Gallstones. German Society for Digestive and Metabolic Diseases (DGVS) and German Society for Surgery of the Alimentary Tract (DGAV) – AWMF Registry 021/008]. Z Gastroenterol 2018; 56 (08) 912-966
  • 34 Eaton JE, Thackeray EW, Lindor KD. Likelihood of malignancy in gallbladder polyps and outcomes following cholecystectomy in primary sclerosing cholangitis. Am J Gastroenterol 2012; 107 (03) 431-439
  • 35 [Practice guideline autoimmune liver diseases – AWMF-Reg. No. 021-27]. Z Gastroenterol 2017; 55 (11) 1135-1226
  • 36 Wiles R. et al. Management and follow-up of gallbladder polyps: Joint guidelines between the European Society of Gastrointestinal and Abdominal Radiology (ESGAR), European Association for Endoscopic Surgery and other Interventional Techniques (EAES), International Society of Digestive Surgery - European Federation (EFISDS) and European Society of Gastrointestinal Endoscopy (ESGE). Eur Radiol 2017; 27 (09) 3856-3866
  • 37 Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: Epidemiology, prevention, and surveillance strategies. World J Gastroenterol 2019; 25 (06) 659-671
  • 38 Charatcharoenwitthaya P. et al. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 2008; 48 (04) 1106-1117
  • 39 Naitoh I. et al. Predictive factors for positive diagnosis of malignant biliary strictures by transpapillary brush cytology and forceps biopsy. J Dig Dis 2016; 17 (01) 44-51
  • 40 Navaneethan U. et al. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc 2015; 81 (01) 168-176
  • 41 Klimstra DS, Paradis V, Schirmacher P. Tumors of the gallbladder and extrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.) Digestive System Tumours. Lyon: International Agency for Research on Cancer; 2019: 265-294
  • 42 Paradis V, Park FM, Schirmacher P. Tumors of the liver and intrahepatic bile ducts. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.) Digestive System Tumours. Lyon: International Agency for Research on Cancer; 2019: 215-264
  • 43 Liau JY. et al. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol 2014; 27 (08) 1163-1173
  • 44 Nakamura H. et al. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47 (09) 1003-1010
  • 45 Sasaki A. et al. Intrahepatic peripheral cholangiocarcinoma: mode of spread and choice of surgical treatment. Br J Surg 1998; 85 (09) 1206-1209
  • 46 Moeini A. et al. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 2017; 66 (05) 952-961
  • 47 Paradis V, Singh SP. Other tumours of the digestive system. In: WHO Classification of Tumours Editorial Board WHO-Classification of Tumours (5th ed.) Digestive System Tumours. Lyon: International Agency for Research on Cancer; 2019: 499-510
  • 48 Wittekind C. TNM-Klassifikation maligner Tumoren. (8. Auflage, korrigierter Nachdruck). Weinheim: Wiley-VCH; 2020
  • 49 Wagner GHP. Organspezifische Tumordokumentation – Prinzipien und Verschlüsselungsanweisungen für Klinik und Praxis. Online-version: deutsche Krebsgesellschaft. Frankfurt (Main): 1995
  • 50 Khuntikeo N. et al. Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 2015; 15: 459
  • 51 Li R. et al. Dynamic enhancing vascular pattern of intrahepatic peripheral cholangiocarcinoma on contrast-enhanced ultrasound: the influence of chronic hepatitis and cirrhosis. Abdom Imaging 2013; 38 (01) 112-119
  • 52 Xu HX. et al. Contrast-enhanced ultrasound of intrahepatic cholangiocarcinoma: correlation with pathological examination. Br J Radiol 2012; 85: 1029-1037
  • 53 Wildner D. et al. CEUS in hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in 320 patients – early or late washout matters: a subanalysis of the DEGUM multicenter trial. Ultraschall Med 2015; 36 (02) 132-139
  • 54 Bach AM. et al. Portal vein evaluation with US: comparison to angiography combined with CT arterial portography. Radiology 1996; 201 (01) 149-154
  • 55 Wennmacker SZ. et al. Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps. Cochrane Database Syst Rev 2018; 8: CD012233
  • 56 Zhang Y. et al. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr 1999; 23 (05) 670-677
  • 57 Johnson PT, Fishman EK. Routine use of precontrast and delayed acquisitions in abdominal CT: time for change. Abdom Imaging 2013; 38 (02) 215-223
  • 58 Fabrega-Foster K. et al. Multimodality imaging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2017; 6 (02) 67-78
  • 59 Valls C. et al. Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging 2000; 25 (05) 490-496
  • 60 Kim JH. et al. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. Am J Roentgenol 2011; 196 (02) W205-W209
  • 61 Bridgewater J. et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014; 60 (06) 1268-1289
  • 62 Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging 2015; 42 (05) 1165-1179
  • 63 Murakami T. et al. Contrast-enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. J Magn Reson Imaging 1995; 5 (02) 165-170
  • 64 Hamrick-Turner J, Abbitt PL, Ros PR. Intrahepatic cholangiocarcinoma: MR appearance. Am J Roentgenol 1992; 158 (01) 77-79
  • 65 Fan ZM. et al. Intrahepatic cholangiocarcinoma: spin-echo and contrast-enhanced dynamic MR imaging. Am J Roentgenol 1993; 161 (02) 313-317
  • 66 Sheng RF. et al. MRI of small intrahepatic mass-forming cholangiocarcinoma and atypical small hepatocellular carcinoma (</=3 cm) with cirrhosis and chronic viral hepatitis: a comparative study. Clin Imaging 2014; 38 (03) 265-272
  • 67 Chung YE. et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009; 29 (03) 683-700
  • 68 Park HJ. et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 2013; 38 (04) 793-801
  • 69 Fattach HE. et al. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative evaluation with diffusion-weighted MR imaging. Eur J Radiol 2015; 84 (08) 1444-1451
  • 70 Navaneethan U. et al. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf) 2015; 3 (03) 209-215
  • 71 Pahade JK. et al. Is there an added value of a hepatobiliary phase with gadoxetate disodium following conventional MRI with an extracellular gadolinium agent in a single imaging session for detection of primary hepatic malignancies?. Abdom Radiol (NY) 2016; 41 (07) 1270-1284
  • 72 Park HJ. et al. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures. Eur Radiol 2014; 24 (04) 947-958
  • 73 Lee J. et al. Mass-forming Intrahepatic Cholangiocarcinoma: Diffusion-weighted Imaging as a Preoperative Prognostic Marker. Radiology 2016; 281 (01) 119-128
  • 74 Rupp C. et al. Effect of scheduled endoscopic dilatation of dominant strictures on outcome in patients with primary sclerosing cholangitis. Gut 2019; 68 (12) 2170-2178
  • 75 Zhang H. et al. Radiological Imaging for Assessing the Respectability of Hilar Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Biomed Res Int 2015; 2015: 497942
  • 76 Lamarca A. et al. (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J Hepatol 2019; 71 (01) 115-129
  • 77 Feng ST. et al. Cholangiocarcinoma: spectrum of appearances on Gd-EOB-DTPA-enhanced MR imaging and the effect of biliary function on signal intensity. BMC Cancer 2015; 15: 38
  • 78 Kim SH. et al. Typical and atypical imaging findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2012; 36 (06) 704-709
  • 79 De Moura DTH. et al. Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis. Endosc Ultrasound 2018; 7 (01) 10-19
  • 80 Heimbach JK. et al. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford) 2011; 13 (05) 356-360
  • 81 El Chafic AH. et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy 2013; 45 (11) 883-889
  • 82 Korc P, Sherman S. ERCP tissue sampling. Gastrointest Endosc 2016; 84 (04) 557-571
  • 83 Fogel EL. et al. Effectiveness of a new long cytology brush in the evaluation of malignant biliary obstruction: a prospective study. Gastrointest Endosc 2006; 63 (01) 71-77
  • 84 Shieh FK. et al. Improved endoscopic retrograde cholangiopancreatography brush increases diagnostic yield of malignant biliary strictures. World J Gastrointest Endosc 2014; 6 (07) 312-317
  • 85 Glasbrenner B. et al. Prospective evaluation of brush cytology of biliary strictures during endoscopic retrograde cholangiopancreatography. Endoscopy 1999; 31 (09) 712-717
  • 86 Macken E. et al. Brush cytology of ductal strictures during ERCP. Acta Gastroenterol Belg 2000; 63 (03) 254-259
  • 87 Mansfield JC. et al. A prospective evaluation of cytology from biliary strictures. Gut 1997; 40 (05) 671-677
  • 88 Trikudanathan G. et al. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc 2014; 79 (05) 783-789
  • 89 Draganov PV. et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: a prospective, long-term follow-up study. Gastrointest Endosc 2012; 75 (02) 347-353
  • 90 Sugiyama M. et al. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 1996; 91 (03) 465-467
  • 91 Jailwala J. et al. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc 2000; 51 (04) 383-390
  • 92 Hartman DJ. et al. Tissue yield and diagnostic efficacy of fluoroscopic and cholangioscopic techniques to assess indeterminate biliary strictures. Clin Gastroenterol Hepatol 2012; 10 (09) 1042-1046
  • 93 Pugliese V. et al. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study. Gastrointest Endosc 1995; 42 (06) 520-526
  • 94 Kitajima Y. et al. Usefulness of transpapillary bile duct brushing cytology and forceps biopsy for improved diagnosis in patients with biliary strictures. J Gastroenterol Hepatol 2007; 22 (10) 1615-1620
  • 95 Navaneethan U. et al. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc 2015; 82 (04) 608-614 e2
  • 96 Gerges C. et al. Digital single-operator peroral cholangioscopy-guided biopsy versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized multicenter trial (with video). Gastrointest Endosc 2019; 91: 1105-1113
  • 97 Aabakken L. et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy 2017; 49 (06) 588-608
  • 98 Bagante F. et al. Assessment of the Lymph Node Status in Patients Undergoing Liver Resection for Intrahepatic Cholangiocarcinoma: the New Eighth Edition AJCC Staging System. J Gastrointest Surg 2018; 22 (01) 52-59
  • 99 Bagante F. et al. Surgical Management of Intrahepatic Cholangiocarcinoma in Patients with Cirrhosis: Impact of Lymphadenectomy on Peri-Operative Outcomes. World J Surg 2018; 42 (08) 2551-2560
  • 100 Ebata T. et al. Surgical resection for Bismuth type IV perihilar cholangiocarcinoma. Br J Surg 2018; 105 (07) 829-838
  • 101 El-Diwany R, Pawlik TM, Ejaz A. Intrahepatic Cholangiocarcinoma. Surg Oncol Clin N Am 2019; 28 (04) 587-599
  • 102 Lang H. et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg 2009; 208 (02) 218-228
  • 103 Schnitzbauer AA. et al. The MEGNA Score and Preoperative Anemia are Major Prognostic Factors After Resection in the German Intrahepatic Cholangiocarcinoma Cohort. Ann Surg Oncol 2020; 27 (04) 1147-1155
  • 104 Zhang XF. et al. Perioperative and Long-Term Outcome for Intrahepatic Cholangiocarcinoma: Impact of Major Versus Minor Hepatectomy. J Gastrointest Surg 2017; 21 (11) 1841-1850
  • 105 Bartsch F. et al. Extended resection of intrahepatic cholangiocarcinoma: A retrospective single-center cohort study. Int J Surg 2019; 67: 62-69
  • 106 Mizuno T, Ebata T, Nagino M. Advanced hilar cholangiocarcinoma: An aggressive surgical approach for the treatment of advanced hilar cholangiocarcinoma: Perioperative management, extended procedures, and multidisciplinary approaches. Surg Oncol 2020; 33: 201-206
  • 107 Rassam F. et al. Modern work-up and extended resection in perihilar cholangiocarcinoma: the AMC experience. Langenbecks Arch Surg 2018; 403 (03) 289-307
  • 108 Primrose JN. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019; 20 (05) 663-673
  • 109 Le Roy B. et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br J Surg 2018; 105 (07) 839-847
  • 110 Chang Y. et al. Impact of surgical strategies on the survival of gallbladder cancer patients: analysis of 715 cases. World J Surg Oncol 2020; 18 (01) 142
  • 111 Coimbra FJF. et al. BRAZILIAN CONSENSUS ON INCIDENTAL GALLBLADDER CARCINOMA. Arq Bras Cir Dig 2020; 33 (01) e1496
  • 112 Sikora SS, Singh RK. Surgical strategies in patients with gallbladder cancer: nihilism to optimism. J Surg Oncol 2006; 93 (08) 670-681
  • 113 Søreide K. et al. Systematic review of management of incidental gallbladder cancer after cholecystectomy. Br J Surg 2019; 106 (01) 32-45
  • 114 Benson 3rd AB. et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw 2009; 7 (04) 350-391
  • 115 Yuza K. et al. Long-term outcomes of surgical resection for T1b gallbladder cancer: an institutional evaluation. BMC Cancer 2020; 20 (01) 20
  • 116 Lee SE. et al. Surgical strategy for T1 gallbladder cancer: a nationwide multicenter survey in South Korea. Ann Surg Oncol 2014; 21 (11) 3654-3660
  • 117 Bartsch F. et al. Surgical Resection for Recurrent Intrahepatic Cholangiocarcinoma. World J Surg 2019; 43 (04) 1105-1116
  • 118 Spolverato G. et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann Surg Oncol 2016; 23 (01) 235-243
  • 119 Seidensticker R. et al. Extensive Use of Interventional Therapies Improves Survival in Unresectable or Recurrent Intrahepatic Cholangiocarcinoma. Gastroenterol Res Pract 2016; 2016: 8732521
  • 120 Xu C. et al. Ultrasound-guided percutaneous microwave ablation versus surgical resection for recurrent intrahepatic cholangiocarcinoma: intermediate-term results. Int J Hyperthermia 2019; 36 (01) 351-358
  • 121 Zhang SJ. et al. Thermal ablation versus repeated hepatic resection for recurrent intrahepatic cholangiocarcinoma. Ann Surg Oncol 2013; 20 (11) 3596-3602
  • 122 Amini N. et al. Temporal trends in liver-directed therapy of patients with intrahepatic cholangiocarcinoma in the United States: a population-based analysis. J Surg Oncol 2014; 110 (02) 163-170
  • 123 Butros SR. et al. Radiofrequency ablation of intrahepatic cholangiocarcinoma: feasability, local tumor control, and long-term outcome. Clin Imaging 2014; 38 (04) 490-494
  • 124 Fu Y. et al. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2012; 23 (05) 642-649
  • 125 Han K. et al. Radiofrequency ablation in the treatment of unresectable intrahepatic cholangiocarcinoma: systematic review and meta-analysis. J Vasc Interv Radiol 2015; 26 (07) 943-948
  • 126 Kolarich AR. et al. Non-surgical management of patients with intrahepatic cholangiocarcinoma in the United States, 2004-2015: an NCDB analysis. J Gastrointest Oncol 2018; 9 (03) 536-545
  • 127 Takahashi EA. et al. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression. Abdom Radiol (NY) 2018; 43 (12) 3487-3492
  • 128 Kim JH. et al. Radiofrequency ablation for recurrent intrahepatic cholangiocarcinoma after curative resection. Eur J Radiol 2011; 80 (03) e221-e225
  • 129 Goldaracena N, Gorgen A, Sapisochin G. Current status of liver transplantation for cholangiocarcinoma. Liver Transpl 2018; 24 (02) 294-303
  • 130 Facciuto ME. et al. Tumors with intrahepatic bile duct differentiation in cirrhosis: implications on outcomes after liver transplantation. Transplantation 2015; 99 (01) 151-157
  • 131 Vilchez V. et al. Long-term outcome of patients undergoing liver transplantation for mixed hepatocellular carcinoma and cholangiocarcinoma: an analysis of the UNOS database. HPB (Oxford) 2016; 18 (01) 29-34
  • 132 Sapisochin G. et al. Intrahepatic cholangiocarcinoma or mixed hepatocellular-cholangiocarcinoma in patients undergoing liver transplantation: a Spanish matched cohort multicenter study. Ann Surg 2014; 259 (05) 944-952
  • 133 Sapisochin G. et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: International retrospective study supporting a prospective assessment. Hepatology 2016; 64 (04) 1178-1188
  • 134 Lunsford KE. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol Hepatol 2018; 3 (05) 337-348
  • 135 Becker NS. et al. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg 2008; 12 (01) 117-122
  • 136 Darwish Murad S. et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 2012; 143 (01) 88-98.e3; quiz e14
  • 137 Rosen CB, Heimbach JK, Gores GJ. Surgery for cholangiocarcinoma: the role of liver transplantation. HPB (Oxford) 2008; 10 (03) 186-189
  • 138 Gulamhusein AF, Sanchez W. Liver transplantation in the management of perihilar cholangiocarcinoma. Hepat Oncol 2015; 2 (04) 409-421
  • 139 Ethun CG. et al. Transplantation Versus Resection for Hilar Cholangiocarcinoma: An Argument for Shifting Treatment Paradigms for Resectable Disease. Ann Surg 2018; 267 (05) 797-805
  • 140 Mantel HT. et al. Strict Selection Alone of Patients Undergoing Liver Transplantation for Hilar Cholangiocarcinoma Is Associated with Improved Survival. PLoS One 2016; 11 (06) e0156127
  • 141 Weber SM. et al. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford) 2015; 17 (08) 669-680
  • 142 NCCN Guidelines® for Hepatobiliary Cancers Version 3. 2019
  • 143 Ray Jr CE. et al. Metaanalysis of survival, complications, and imaging response following chemotherapy-based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2013; 24 (08) 1218-1226
  • 144 Koch C. et al. Poor Prognosis of Advanced Cholangiocarcinoma: Real-World Data from a Tertiary Referral Center. Digestion 2019; 101: 458-465
  • 145 Gusani NJ. et al. Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J Gastrointest Surg 2008; 12 (01) 129-137
  • 146 Boehm LM. et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol 2015; 111 (02) 213-220
  • 147 Kiefer MV. et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer 2011; 117 (07) 1498-1505
  • 148 Vogl TJ. et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int J Cancer 2012; 131 (03) 733-740
  • 149 Cucchetti A. et al. Improving patient selection for selective internal radiation therapy of intra-hepatic cholangiocarcinoma: A meta-regression study. Liver Int 2017; 37 (07) 1056-1064
  • 150 Gangi A. et al. Intrahepatic Cholangiocarcinoma Treated with Transarterial Yttrium-90 Glass Microsphere Radioembolization: Results of a Single Institution Retrospective Study. J Vasc Interv Radiol 2018; 29 (08) 1101-1108
  • 151 Manceau V. et al. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and (90)Y-loaded glass microsphere selective internal radiation therapy. Eur J Nucl Med Mol Imaging 2018; 45 (10) 1731-1741
  • 152 Reimer P. et al. Prognostic Factors in Overall Survival of Patients with Unresectable Intrahepatic Cholangiocarcinoma Treated by Means of Yttrium-90 Radioembolization: Results in Therapy-Naïve Patients. Cardiovasc Intervent Radiol 2018; 41 (05) 744-752
  • 153 Yang L. et al. Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: a systematic review. J Gastrointest Oncol 2015; 6 (05) 570-88
  • 154 Koch C. et al. Poor Prognosis of Advanced Cholangiocarcinoma: Real-World Data from a Tertiary Referral Center. Digestion 2020; 101 (04) 458-465
  • 155 Hyder O. et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol 2013; 20 (12) 3779-3786
  • 156 Marquardt S. et al. Percutaneous hepatic perfusion (chemosaturation) with melphalan in patients with intrahepatic cholangiocarcinoma: European multicentre study on safety, short-term effects and survival. Eur Radiol 2019; 29 (04) 1882-1892
  • 157 Edeline J. et al. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol 2019; 6 (01) 51-59
  • 158 Konstantinidis IT. et al. Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016; 122 (05) 758-765
  • 159 Al-Adra DP. et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol 2015; 41 (01) 120-127
  • 160 Wronka KM. et al. Relevance of Preoperative Hyperbilirubinemia in Patients Undergoing Hepatobiliary Resection for Hilar Cholangiocarcinoma. J Clin Med 2019; 8 (04) 458
  • 161 Al Mahjoub A. et al. Preoperative Biliary Drainage in Patients with Resectable Perihilar Cholangiocarcinoma: Is Percutaneous Transhepatic Biliary Drainage Safer and More Effective than Endoscopic Biliary Drainage? A Meta-Analysis. J Vasc Interv Radiol 2017; 28 (04) 576-582
  • 162 Hameed A. et al. Percutaneous vs. endoscopic pre-operative biliary drainage in hilar cholangiocarcinoma – a systematic review and meta-analysis. HPB (Oxford) 2016; 18 (05) 400-410
  • 163 Coelen RJS. et al. Endoscopic versus percutaneous biliary drainage in patients with resectable perihilar cholangiocarcinoma: a multicentre, randomised controlled trial. Lancet Gastroenterol Hepatol 2018; 3 (10) 681-690
  • 164 Ba Y. et al. Percutaneous transhepatic biliary drainage may be the preferred preoperative drainage method in hilar cholangiocarcinoma. Endosc Int Open 2020; 8 (02) E203-E210
  • 165 Maeda T. et al. Preoperative course of patients undergoing endoscopic nasobiliary drainage during the management of resectable perihilar cholangiocarcinoma. J Hepatobiliary Pancreat Sci 2019; 26 (08) 341-347
  • 166 Nakai Y. et al. Multicenter study of endoscopic preoperative biliary drainage for malignant hilar biliary obstruction: E-POD hilar study. J Gastroenterol Hepatol 2018; 33 (05) 1146-1153
  • 167 Komaya K. et al. Verification of the oncologic inferiority of percutaneous biliary drainage to endoscopic drainage: A propensity score matching analysis of resectable perihilar cholangiocarcinoma. Surgery 2017; 161 (02) 394-404
  • 168 Kim KM. et al. A Comparison of Preoperative Biliary Drainage Methods for Perihilar Cholangiocarcinoma: Endoscopic versus Percutaneous Transhepatic Biliary Drainage. Gut Liver 2015; 9 (06) 791-799
  • 169 Kennedy TJ. et al. Role of preoperative biliary drainage of liver remnant prior to extended liver resection for hilar cholangiocarcinoma. HPB (Oxford) 2009; 11 (05) 445-451
  • 170 Miura S. et al. Preoperative biliary drainage of the hepatic lobe to be resected does not affect liver hypertrophy after percutaneous transhepatic portal vein embolization. Surg Endosc 2020; 34 (02) 667-674
  • 171 Hintze RE. et al. Magnetic resonance cholangiopancreatography-guided unilateral endoscopic stent placement for Klatskin tumors. Gastrointest Endosc 2001; 53 (01) 40-46
  • 172 Abraham NS, Barkun JS, Barkun AN. Palliation of malignant biliary obstruction: a prospective trial examining impact on quality of life. Gastrointest Endosc 2002; 56 (06) 835-841
  • 173 Paik WH. et al. Palliative treatment with self-expandable metallic stents in patients with advanced type III or IV hilar cholangiocarcinoma: a percutaneous versus endoscopic approach. Gastrointest Endosc 2009; 69 (01) 55-62
  • 174 Saluja SS. et al. Endoscopic or percutaneous biliary drainage for gallbladder cancer: a randomized trial and quality of life assessment. Clin Gastroenterol Hepatol 2008; 6 (08) 944-950.e3
  • 175 Schima W. et al. Biliary Wallstent endoprosthesis in malignant hilar obstruction: long-term results with regard to the type of obstruction. Clin Radiol 1997; 52 (03) 213-219
  • 176 Rees J. et al. The outcomes of biliary drainage by percutaneous transhepatic cholangiography for the palliation of malignant biliary obstruction in England between 2001 and 2014: a retrospective cohort study. BMJ Open 2020; 10 (01) e033576
  • 177 Uberoi R. et al. British Society of Interventional Radiology: Biliary Drainage and Stenting Registry (BDSR). Cardiovasc Intervent Radiol 2012; 35 (01) 127-138
  • 178 Smith AC. et al. Randomised trial of endoscopic stenting versus surgical bypass in malignant low bileduct obstruction. Lancet 1994; 344: 1655-1660
  • 179 Speer AG. et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet 1987; 2: 57-62
  • 180 Almadi MA, Barkun A, Martel M. Plastic vs. Self-Expandable Metal Stents for Palliation in Malignant Biliary Obstruction: A Series of Meta-Analyses. Am J Gastroenterol 2017; 112 (02) 260-273
  • 181 Lee TH. et al. Prospective comparison of endoscopic bilateral stent-in-stent versus stent-by-stent deployment for inoperable advanced malignant hilar biliary stricture. Gastrointest Endosc 2019; 90 (02) 222-230
  • 182 Sharaiha RZ. et al. Endoscopic ultrasound-guided biliary drainage versus percutaneous transhepatic biliary drainage: predictors of successful outcome in patients who fail endoscopic retrograde cholangiopancreatography. Surg Endosc 2016; 30 (12) 5500-5505
  • 183 Paik WH. et al. EUS-Guided Biliary Drainage Versus ERCP for the Primary Palliation of Malignant Biliary Obstruction: A Multicenter Randomized Clinical Trial. Am J Gastroenterol 2018; 113 (07) 987-997
  • 184 Bang JY. et al. Stent placement by EUS or ERCP for primary biliary decompression in pancreatic cancer: a randomized trial (with videos). Gastrointest Endosc 2018; 88 (01) 9-17
  • 185 Dumonceau JM. et al. Endoscopic biliary stenting: indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated October 2017. Endoscopy 2018; 50 (09) 910-930
  • 186 Moole H. et al. Endoscopic versus Percutaneous Biliary Drainage in Palliation of Advanced Malignant Hilar Obstruction: A Meta-Analysis and Systematic Review. Can J Gastroenterol Hepatol 2016; 2016: 4726078
  • 187 Zhao XQ. et al. Comparison of percutaneous transhepatic biliary drainage and endoscopic biliary drainage in the management of malignant biliary tract obstruction: a meta-analysis. Dig Endosc 2015; 27 (01) 137-145
  • 188 Born P. et al. Long-term results of percutaneous transhepatic biliary drainage for benign and malignant bile duct strictures. Scand J Gastroenterol 1998; 33 (05) 544-549
  • 189 De Palma GD. et al. Unilateral versus bilateral endoscopic hepatic duct drainage in patients with malignant hilar biliary obstruction: results of a prospective, randomized, and controlled study. Gastrointest Endosc 2001; 53 (06) 547-553
  • 190 Chang WH, Kortan P, Haber GB. Outcome in patients with bifurcation tumors who undergo unilateral versus bilateral hepatic duct drainage. Gastrointest Endosc 1998; 47 (05) 354-362
  • 191 Bulajic M. et al. Clinical outcome in patients with hilar malignant strictures type II Bismuth-Corlette treated by minimally invasive unilateral versus bilateral endoscopic biliary drainage. Hepatobiliary Pancreat Dis Int 2012; 11 (02) 209-214
  • 192 Cheng JL. et al. Endoscopic palliation of patients with biliary obstruction caused by nonresectable hilar cholangiocarcinoma: efficacy of self-expandable metallic Wallstents. Gastrointest Endosc 2002; 56 (01) 33-39
  • 193 Vienne A. et al. Prediction of drainage effectiveness during endoscopic stenting of malignant hilar strictures: the role of liver volume assessment. Gastrointest Endosc 2010; 72 (04) 728-735
  • 194 Harvey PR. et al. Higher volume providers are associated with improved outcomes following ERCP for the palliation of malignant biliary obstruction. EClinicalMedicine 2020; 18: 100212
  • 195 Tal AO. et al. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J Gastrointest Endosc 2014; 6 (01) 13-19
  • 196 Moole H. et al. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: A systematic review and meta-analysis. World J Gastroenterol 2017; 23 (07) 1278-1288
  • 197 Zoepf T. et al. Photodynamic therapy with 5-aminolevulinic acid is not effective in bile duct cancer. Gastrointest Endosc 2001; 54 (06) 763-766
  • 198 Yang J. et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy 2018; 50 (08) 751-760
  • 199 Ortner ME. et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 2003; 125 (05) 1355-1363
  • 200 Zoepf T. et al. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol 2005; 100 (11) 2426-2430
  • 201 Pereira SP. et al. PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer. ESMO Open 2018; 3 (05) e000379
  • 202 Gonzalez-Carmona MA. et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49 (04) 437-447
  • 203 Wentrup R. et al. Photodynamic Therapy Plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma. Gut Liver 2016; 10 (03) 470-475
  • 204 Strand DS. et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc 2014; 80 (05) 794-804
  • 205 Dolak W. et al. Photodynamic therapy with polyhematoporphyrin for malignant biliary obstruction: A nationwide retrospective study of 150 consecutive applications. United European Gastroenterol J 2017; 5 (01) 104-110
  • 206 Kahaleh M. et al. Unresectable cholangiocarcinoma: comparison of survival in biliary stenting alone versus stenting with photodynamic therapy. Clin Gastroenterol Hepatol 2008; 6 (03) 290-297
  • 207 Ben-Josef E. et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol 2005; 23 (34) 8739-8747
  • 208 Brunner TB. et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 2019; 132: 42-47
  • 209 Tao R. et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. J Clin Oncol 2016; 34 (03) 219-226
  • 210 Lee J. et al. Efficacy of stereotactic body radiotherapy for unresectable or recurrent cholangiocarcinoma: a meta-analysis and systematic review. Strahlenther Onkol 2019; 195 (02) 93-102
  • 211 Frakulli R. et al. Stereotactic body radiation therapy in cholangiocarcinoma: a systematic review. Br J Radiol 2019; 92: 20180688
  • 212 Barney BM. et al. Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiat Oncol 2012; 7: 67
  • 213 Tse RV. et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 2008; 26 (04) 657-664
  • 214 Weiner AA. et al. Stereotactic body radiotherapy for primary hepatic malignancies – Report of a phase I/II institutional study. Radiother Oncol 2016; 121 (01) 79-85
  • 215 Kopek N. et al. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol 2010; 94 (01) 47-52
  • 216 Hong TS. et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J Clin Oncol 2016; 34 (05) 460-468
  • 217 Schnapauff D. et al. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol 2012; 35 (03) 581-587
  • 218 Vogel A. et al. The diagnosis and treatment of cholangiocarcinoma. Dtsch Arztebl Int 2014; 111 (44) 748-754
  • 219 Horgan AM. et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol 2012; 30 (16) 1934-1940
  • 220 Edeline J. et al. Gemox versus surveillance following surgery of localized biliary tract cancer: Results of the PRODIGE 12-ACCORD 18 (UNICANCER GI) phase III trial. Journal of Clinical Oncology 2017; 35 (04) 225-225
  • 221 Stein A. et al. Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial) – a randomized, multidisciplinary, multinational phase III trial. BMC Cancer 2015; 15: 564
  • 222 Valle J. et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362 (14) 1273-1281
  • 223 Shroff RT. et al. Gemcitabine, Cisplatin, and nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncol 2019; 5 (06) 824-830
  • 224 Okusaka T. et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer 2010; 103 (04) 469-474
  • 225 Valle JW. et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol 2014; 25 (02) 391-398
  • 226 Park JO. et al. Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review. Cancer Res Treat 2015; 47 (03) 343-361
  • 227 Valle JW. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27 (Suppl. 05) v28-v37
  • 228 Lamarca A. et al. ABC-06 | A randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin / 5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced / metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. Journal of Clinical Oncology 2019; 37 (15) 4003-4003
  • 229 Lamarca A. et al. Second-line chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol 2014; 25 (12) 2328-2338
  • 230 Walter T. et al. Feasibility and benefits of second-line chemotherapy in advanced biliary tract cancer: a large retrospective study. Eur J Cancer 2013; 49 (02) 329-335
  • 231 Brieau B. et al. Second-line chemotherapy for advanced biliary tract cancer after failure of the gemcitabine-platinum combination: A large multicenter study by the Association des Gastro-Entérologues Oncologues. Cancer 2015; 121 (18) 3290-3297
  • 232 Abou-Alfa GK. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020; 21 (05) 671-684
  • 233 Valle JW. et al. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017; 7 (09) 943-962
  • 234 Marabelle A. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology 0 (00) JCO.19.02105
  • 235 Le DT. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413
  • 236 Le DT. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372 (26) 2509-2520
  • 237 Goeppert B. et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer 2019; 120 (01) 109-114
  • 238 Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2018; 16: 105-122
  • 239 Jain A. et al. Cholangiocarcinoma With FGFR Genetic Aberrations: A Unique Clinical Phenotype. JCO Precision Oncology 2018; (02) 1-12
  • 240 Sia D. et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun 2015; 6: 6087
  • 241 Javle M. et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol 2018; 36 (03) 276-282
  • 242 Mazzaferro V. et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer 2019; 120 (02) 165-171
  • 243 Bahleda R. et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res 2019; 25 (16) 4888-4897
  • 244 Abou-Alfa GK. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. The Lancet Oncology 2020; 21 (05) 671-684
  • 245 Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15 (12) 731-747
  • 246 Solomon JP. et al. NTRK fusion detection across multiple assays and 33997 cases: diagnostic implications and pitfalls. Mod Pathol 2019; 33: 38-46
  • 247 Ross JS. et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014; 19 (03) 235-242
  • 248 Drilon A. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018; 378 (08) 731-739
  • 249 Oh DY, Bang YJ. HER2-targeted therapies – a role beyond breast cancer. Nat Rev Clin Oncol 2019; 17: 33-48
  • 250 Neyaz A. et al. Investigation of targetable predictive and prognostic markers in gallbladder carcinoma. J Gastrointest Oncol 2018; 9 (01) 111-125
  • 251 Javle M. et al. HER2/neu-directed therapy for biliary tract cancer. J Hematol Oncol 2015; 8: 58
  • 252 Czink E. et al. [Durable remission under dual HER2 blockade with Trastuzumab and Pertuzumab in a patient with metastatic gallbladder cancer]. Z Gastroenterol 2016; 54 (05) 426-430
  • 253 Hyman DM. et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 2015; 373 (08) 726-736
  • 254 Salama AKS. et al. Dabrafenib and trametinib in patients with tumors with BRAF V600E/K mutations: Results from the molecular analysis for therapy choice (MATCH) Arm H. Journal of Clinical Oncology 2019; 37 (15) 3002
  • 255 Lavingia V, Fakih M. Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review. J Gastrointest Oncol 2016; 7 (06) E98-E102
  • 256 Kocsis J. et al. Combined dabrafenib and trametinib treatment in a case of chemotherapy-refractory extrahepatic BRAF V600E mutant cholangiocarcinoma: dramatic clinical and radiological response with a confusing synchronic new liver lesion. J Gastrointest Oncol 2017; 8 (02) E32-E38
  • 257 Bunyatov T. et al. Personalised approach in combined treatment of cholangiocarcinoma: a case report of healing from cholangiocellular carcinoma at stage IV. J Gastrointest Oncol 2019; 10 (04) 815-820
  • 258 Abou-Alfa GK. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Oncology 2020; 21 (06) 796-807
  • 259 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). Entwicklung von leitlinienbasierten Qualitätsindikatoren. Methodenpapier für das Leitlinienprogramm Onkologie, Version 2.1.. 2017 Available from: http://www.leitlinienprogramm-onkologie.de/methodik/informationen-zur-methodik/
  • 260 Celotti A. et al. Preoperative biliary drainage in hilar cholangiocarcinoma: Systematic review and meta-analysis. Eur J Surg Oncol 2017; 43 (09) 1628-1635
  • 261 Ramanathan R. et al. Preoperative Biliary Drainage Is Associated with Increased Complications After Liver Resection for Proximal Cholangiocarcinoma. J Gastrointest Surg 2018; 22 (11) 1950-1957
  • 262 Cai Y. et al. Preoperative biliary drainage versus direct surgery for perihilar cholangiocarcinoma: A retrospective study at a single center. Biosci Trends 2017; 11 (03) 319-325
  • 263 Farges O. et al. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br J Surg 2013; 100 (02) 274-283
  • 264 Xiong JJ. et al. Preoperative biliary drainage in patients with hilar cholangiocarcinoma undergoing major hepatectomy. World J Gastroenterol 2013; 19 (46) 8731-8739
  • 265 Wang L. et al. A systematic review of the comparison of the incidence of seeding metastasis between endoscopic biliary drainage and percutaneous transhepatic biliary drainage for resectable malignant biliary obstruction. World J Surg Oncol 2019; 17 (01) 116
  • 266 Kishi Y. et al. The type of preoperative biliary drainage predicts short-term outcome after major hepatectomy. Langenbecks Arch Surg 2016; 401 (04) 503-511
  • 267 Sangchan A. et al. Efficacy of metal and plastic stents in unresectable complex hilar cholangiocarcinoma: a randomized controlled trial. Gastrointest Endosc 2012; 76 (01) 93-99