Klinische Neurophysiologie 2021; 52(03): 180-194
DOI: 10.1055/a-1438-1828
CME-Fortbildung

Neuromonitoring bei zerebralen Anfällen im Neugeborenenalter – Chancen und Herausforderungen

Neuromonitoring in neonatal seizures – significance and challenges
Regina Trollmann

Angesichts der vielen Kinder mit neonatalen Risikofaktoren für erworbene ZNS-Läsionen und zerebrale Anfälle ist das EEG zunehmend relevant für eine optimierte Diagnostik und Therapieüberwachung [1] [2]. Folgender Artikel gibt einen Überblick über Besonderheiten des neonatalen EEG und über aktuelle Empfehlungen zum Stellenwert des Langzeit-EEG-Monitorings bei neonatalen Anfällen und epileptischen Enzephalopathien im Früh- und Neugeborenalter.

Abstract

Neonatal EEG-monitoring including amplitude-integrated EEG (aEEG) is a valuable bedside tool for diagnosis of epileptic seizures and neonatal epileptic encephalopathies, as well as for continuous treatment monitoring. Because of methodical limitations of aEEG monitoring, the combinatory use of aEEG and conventional EEG is recommended as the gold standard. Especially physiological EEG maturation patterns and epileptic discharges (e. g. discharges<10 s, electrographic seizures in very preterm neonates) are exclusively identified by conventional EEG. Long-term EEG/aEEG monitoring is of special significance in neonates at risk of “electrographic-only” or subtle seizures. EEG/aEEG is an important additional tool for monitoring neonates with HIE undergoing therapeutic hypothermia. Rarely, typical EEG changes indicative of a genetic variant have been characterized. Further studies are necessary on the role of EEG/aEEG as biomarker of neurodevelopmental outcome in neonates with seizures of various etiology.



Publication History

Article published online:
13 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Shellhaas RA, Chang T, Tsuchida T. et al. The American Clinical Neurophysiology Society's Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol 2011; 28: 611-617
  • 2 Pressler RM, Cilio MR, Mizrahi EM. et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021; 62: 615-628
  • 3 Pisani F, Facini C, Pelosi A. et al. Neonatal seizures in preterm newborns: A predictive model for outcome. Eur J Paediatr Neurol 2016; 20: 243-251
  • 4 Glass HC, Shellhaas RA, Tsuchida TN. et al. Neonatal Seizure Registry study group. Seizures in Preterm Neonates: A Multicenter Observational Cohort Study. Pediatr Neurol 2017; 72: 19-24
  • 5 Lloyd RO, O'Toole JM, Pavlidis E. et al. Electrographic Seizures during the Early Postnatal Period in Preterm Infants. J Pediatr 2017; 187: 18-25.e2
  • 6 Nunes ML, Yozawitz EG, Zuberi S. et al. Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: Is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open 2019; 4: 10-29
  • 7 Lynch NE, Stevenson NJ, Livingstone V. et al. The temporal characteristics of seizures in neonatal hypoxic ischemic encephalopathy treated with hypothermia. Seizure 2015; 33: 60-65
  • 8 Scheffer IE, Berkovic S, Capovilla G. et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017; 58: 512-521
  • 9 Fitzgerald MP, Massey SL, Fung FW. et al. High electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates with hypoxic-ischemic encephalopathy. Seizure 2018; 61: 221-226
  • 10 Miller SM, Sullivan SM, Ireland Z. et al. Neonatal seizures are associated with redistribution and loss of GABA-A α-subunits in the hypoxic-ischaemic pig. J Neurochem 2016; 139: 471-484
  • 11 Isaeva E, Isaev D, Holmes GL. Alteration of synaptic plasticity by neonatal seizures in rat somatosensory cortex. Epilepsy Res 2013; 106: 280-283
  • 12 Jung S, Ballheimer YE, Brackmann F. et al. Seizure-induced neuronal apoptosis is related to dysregulation of the RNA-edited GluR2 subunit in the developing mouse brain. Brain Res 2020; 1735: 146760
  • 13 Hellström-Westas L. Amplitude-integrated electroencephalography for seizure detection in newborn infants. Semin Fetal Neonatal Med 2018; 23: 175-182
  • 14 Pavlidis E, Spagnoli C, Pelosi A. et al. Neonatal status epilepticus: differences between preterm and term newborns. Eur J Paediatr Neurol 2015; 19: 314-319
  • 15 Janáčková S, Boyd S, Yozawitz E. et al. Electroencephalographic characteristics of epileptic seizures in preterm neonates. Clin Neurophysiol 2016; 127: 2721-2727
  • 16 Benedetti GM, Silverstein FS, Rau SM. et al. Sedation and Analgesia Influence Electroencephalography Monitoring in Pediatric Neurocritical Care. Pediatr Neurol 2018; 87: 57-64
  • 17 Tsuchida TN, Wusthoff CJ, Shellhaas RA. et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol 2013; 30: 161-173
  • 18 Nagarajan L, Palumbo L, Ghosh S. Neurodevelopmental outcomes in neonates with seizures: A numerical score of background electroencephalography to help prognosticate. J Child Neurol 2010; 8: 961e8
  • 19 Boylan GB, Kharoshankaya L, Mathieson SR. Diagnosis of seizures and encephalopathy using conventional EEG and amplitude integrated EEG. Handb Clin Neurol 2019; 162: 363-400
  • 20 Weeke LC, van Ooijen IM, Groenendaal F. et al. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome. Clin Neurophysiol 2017; 128: 2428-2435
  • 21 Weeke LC, Boylan GB, Pressler RM. et al. NEonatal seizure treatment with Medication Off -patent (NEMO) consortium. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in the era of therapeutic hypothermia. Eur J Paediatr Neurol 2016; 20: 855-864
  • 22 Azzopardi D. TOBY study group. Predictive value of the amplitude integrated EEG in infants with hypoxic ischaemic encephalopathy: data from a randomised trial of therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed 2014; 99: F80-F82
  • 23 Nash KB, Bonifacio SL, Glass HC. et al. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology 2011; 76: 556-562
  • 24 Chang PD, Chow DS, Alber A. et al. Predictive Values of Location and Volumetric MRI Injury Patterns for Neurodevelopmental Outcomes in Hypoxic-Ischemic Encephalopathy Neonates. Brain Sci 2020; 10: 991
  • 25 Felling RJ, Sun LR, Maxwell EC. et al. Pediatric arterial ischemic stroke: Epidemiology, risk factors, and management. Blood Cells Mol Dis 2017; 67: 23-33
  • 26 Dunbar M, Kirton A. Perinatal Stroke. Semin Pediatr Neurol 2019; 32: 100767
  • 27 Benavente-Fernández I, Lubián-López SP, Jiménez-Gómez G. et al. Low-voltage pattern and absence of sleep-wake cycles are associated with severe hemorrhage and death in very preterm infants. Eur J Pediatr 2015; 174: 85-90
  • 28 Fogtmann EP, Plomgaard AM, Greisen G. et al. Prognostic Accuracy of Electroencephalograms in Preterm Infants: A Systematic Review. Pediatrics 2017; 139: e20161951
  • 29 Pisani F, Fusco C, Spagnoli C. Linking acute symptomatic neonatal seizures, brain injury and outcome in preterm infants. Epilepsy Behav 2020; 112: 107406
  • 30 Buttle SG, Lemyre B, Sell E. et al. Combined conventional and amplitude-integrated EEG monitoring in neonates: A prospective study. J Child Neurol 2019; 34: 313-320
  • 31 Lee S, Kim SH, Kim B. et al. Genetic diagnosis and clinical characteristics by etiological classification in early-onset epileptic encephalopathy with burst suppression pattern. Epilepsy Res 2020; 163: 106323
  • 32 Shellhaas RA, Wusthoff CJ, Tsuchida TN. et al. Neonatal Seizure Registry. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017; 89: 893-899
  • 33 Na JH, Shin S, Yang D. et al. Targeted gene panel sequencing in early infantile onset developmental and epileptic encephalopathy. Brain Dev 2020; 42: 438-448
  • 34 Saitsu H, Kato M, Okada I. et al. STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010; 51: 2397-2405
  • 35 Wolff M, Johannesen KM, Hedrich UBS. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140: 1316-1336
  • 36 Vilan A, Mendes Ribeiro J, Striano P. et al. A Distinctive Ictal Amplitude-Integrated Electroencephalography Pattern in Newborns with Neonatal Epilepsy Associated with KCNQ2 Mutations. Neonatology 2017; 112: 387-393
  • 37 Kuchenbuch M, Barcia G, Chemaly N. et al. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142: 2996-3008