Semin Liver Dis 2007; 27(4): 367-377
DOI: 10.1055/s-2007-991513
© Thieme Medical Publishers

Endoplasmic Reticulum Stress and Liver Injury

Neil Kaplowitz1 , Tin Aung Than1 , Masao Shinohara1 , Cheng Ji1
  • 1Department of Medicine, USC-UCLA Research Center for Alcoholic and Pancreatic Diseases and USC Research Center for Liver Diseases, Keck School of Medicine University of Southern California, Los Angeles, California
Further Information

Publication History

Publication Date:
02 November 2007 (online)

ABSTRACT

Endoplasmic reticulum stress, initiated by protein overload or malfolding, activates a complex network of interacting and parallel responses that dampen the stress. However, when the protective response is insufficient, a set of responses leads to apoptosis. Coupled with the latter are promotion of lipid synthesis and proinflammatory responses. Evidence has been mounting for an important role of the endoplasmic reticulum (ER) stress response in the pathogenesis of chronic viral hepatitis, insulin resistance and nonalcoholic fatty liver disease, ischemia-reperfusion injury, genetic disorders of protein malfolding, and alcoholic liver disease. In the latter, a key candidate for inducing ER stress is hyperhomocysteinemia. Betaine treatment promotes removal of homocysteine and prevents ER stress, fatty liver, and apoptosis in a mouse model of alcohol-induced liver disease. With increasing interest in the potential role of ER stress in liver disease, greater understanding of pathophysiology, prevention, and treatment of liver disease is anticipated.

REFERENCES

  • 1 Ji C, Kaplowitz N. ER stress: can the liver cope?.  J Hepatol. 2006;  45 321-333
  • 2 Wu J, Kaufman R J. From acute ER stress to physiological roles of the unfolded protein response.  Cell Death Differ. 2006;  13 374-384
  • 3 Ogata M, Hino S, Saito A et al.. Autophagy is activated for cell survival after endoplasmic reticulum stress.  Mol Cell Biol. 2006;  26 9220-9231
  • 4 Cullinan S B, Zhang D, Hannink M et al.. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.  Mol Cell Biol. 2003;  23 7198-7209
  • 5 Hollien J, Weissman J. Decay of endoplasmic reticulum localized mRNAs during the unfolded protein response.  Science. 2006;  313 104-107
  • 6 Hetz C, Bernasconi P, Fisher J et al.. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α.  Science. 2006;  312 572-576
  • 7 Tan Y, Dourdin N, Wu C et al.. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis.  J Biol Chem. 2006;  281 16016-16024
  • 8 Hu P, Han Z, Couvillon A, Kaufman R, Exton J. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-kB activation and down-regulation of TRAF2 expression.  Mol Cell Biol. 2006;  26 3071-3084
  • 9 Di Sano F, Ferraro E, Tufi R et al.. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism.  J Biol Chem. 2006;  281 2693-2700
  • 10 Marciniak S J, Yun C, Oyadomari S et al.. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.  Genes Dev. 2004;  18 3066-3077
  • 11 Boyce M, Bryant K, Jousse C et al.. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress.  Science. 2005;  307 935-939
  • 12 Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death.  EMBO J. 2005;  24 1243-1255
  • 13 Song L, De Sarno P, Jope R S. Central role of glycogen synthase kinase-3β in endoplasmic reticulum stress-induced caspase-3 activation.  J Biol Chem. 2002;  277 44701-44708
  • 14 Scheuner D, Patel R, Wang F et al.. Double-stranded RNA-dependent protein kinase phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 mediates apoptosis.  J Biol Chem. 2006;  281 21458-21468
  • 15 Liang G, Audas T E, Li Y et al.. Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element.  Mol Cell Biol. 2006;  26 7999-8010
  • 16 Zhang K, Shen X, Wu J et al.. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response.  Cell. 2006;  124 587-599
  • 17 Lee J N, Ye J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1.  J Biol Chem. 2004;  279 45257-45265
  • 18 Tardif K D, Waris G, Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress.  Trends Microbiol. 2005;  13 159-163
  • 19 Zheng Y, Gao B, Li Y et al.. Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response.  J Microbiol. 2005;  43 529-536
  • 20 Pavio N, Romano P, Graczyk T, Feintstone S, Taylor D. Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2α kinase PERK.  J Virol. 2003;  77 3578-3585
  • 21 Tardif K D, Mori K, Kaufman R, Siddiqui A. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response.  J Biol Chem. 2004;  279 17158-17164
  • 22 Benali-Furet N L, Chami M, Houel L et al.. Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion.  Oncogene. 2005;  24 4921-4933
  • 23 Tardif K D, Siddiqui A. Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic replicon-expressing cells.  J Virol. 2003;  77 11644-11650
  • 24 Sakon M, Ariyoshi H, Umeshita K, Monden M. Ischemia-reperfusion of the liver with special reference to calcium-dependent mechanisms.  Surg Today. 2002;  32 1-12
  • 25 Bailly-Maitre B, Fondevila C, Kaldas F et al.. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury.  Proc Natl Acad Sci USA. 2006;  103 2809-2814
  • 26 Chae H J, Kim H, Xu C et al.. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress.  Mol Cell. 2004;  15 355-366
  • 27 Vilatoba M, Eckstein C, Bilbao G et al.. Sodium 4-phenybutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis.  Surgery. 2005;  138 342-351
  • 28 Kruse K B, Dear A, Kaltenbrun E R et al.. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease.  Am J Pathol. 2006;  168 1299-1308
  • 29 Bergeron A, Jorquera R, Orejuela D, Tanguay R. Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I.  J Biol Chem. 2006;  281 5329-5334
  • 30 Hidvegi T, Schmidt B, Hale P, Perlmutter D. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activated caspases -4 and -12 NFkB, and BAP31 but not the unfolded protein response.  J Biol Chem. 2005;  280 39002-39015
  • 31 Du K, Herzig S, Kulkarni R, Montminy M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.  Science. 2003;  300 1574-1577
  • 32 Özcan U, Cao Q, Yilmaz E et al.. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.  Science. 2004;  306 457-461
  • 33 Nakatani Y, Kaneto H, Kawamori D et al.. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes.  J Biol Chem. 2005;  280 847-851
  • 34 Wang D, Wei Y, Pagliassotti M. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis.  Endocrinology. 2006;  147 943-951
  • 35 Borradaile N M, Han X, Harp J et al.. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.  J Lipid Res. 2006;  47 2726-2737
  • 36 Solinas G, Naugler W, Galimi F, Lee M S, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates.  Proc Natl Acad Sci USA. 2006;  103 16454-16459
  • 37 Burrows J A, Willis L, Perlmutter D. Chemical chaperones mediate increased secretion of mutant α1antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency.  Proc Natl Acad Sci USA. 2000;  97 1796-1801
  • 38 Cuchel M, Bloedon L, Szapary P et al.. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia.  N Engl J Med. 2007;  356 148-156
  • 39 Zhou H, Gurley E, Jarujaron S et al.. HIV protease inhibitors activate the unfolded protein response and disrupt lipid metabolism in primary hepatocytes.  Am J Physiol. 2006;  291 G1071-G1080
  • 40 Werstuck G H, Lentz S, Dayal S et al.. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways.  J Clin Invest. 2001;  107 1263-1273
  • 41 Hamelet J, Demuth K, Paul J, Delabar J, Janel N. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice.  J Hepatol. 2007;  46 151-159
  • 42 Watanabe M, Osada J, Aratani Y et al.. Mice deficient in cystathionine beta synthase: animal models for mild and severe homocysteinemia.  Proc Natl Acad Sci USA. 1995;  92 1585-1589
  • 43 Chen Z, Karaplis A, Ackerman S et al.. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.  Hum Mol Genet. 2001;  10 433-443
  • 44 Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.  Gastroenterology. 2003;  124 1488-1499
  • 45 Sakuta H, Suzuki T. Alcohol consumption and plasma homocysteine.  Alcohol. 2005;  37 73-77
  • 46 Coll O, Colell A, Garcia-Ruiz C et al.. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.  Hepatology. 2003;  38 692-702
  • 47 Ji C, Deng Q, Kaplowitz N. Role of TNF-α in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury.  Hepatology. 2004;  40 442-451
  • 48 Song Z, Zhou Z, Uriarte S et al.. S-adenosylhomocysteine sensitizes to TNF-α hepatotoxicity mice and liver cells: a possible etiological factor in alcoholic liver disease.  Hepatology. 2004;  40 989-997
  • 49 Kharbanda K K, Mailliard M, Baldwin C et al.. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.  J Hepatol. 2007;  46 314-321
  • 50 Li Z, Agellon L, Allen T et al.. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.  Cell Metab. 2006;  3 321-331
  • 51 Sparks J D, Collins H, Chirieac D et al.. Hepatic very-low density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methytransferase.  Biochem J. 2006;  395 363-371
  • 52 Ji C, Mehrian-Shai R, Chan C, Hsu Y, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding.  Alcohol Clin Exp Res. 2005;  29 1496-1503
  • 53 Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins(SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model.  J Hepatol. 2006;  45 717-724
  • 54 You M, Matsumoto M, Pacold C, Cho W, Crabb D. The role of AMP-activated protein kinase in the action of ethanol in the liver.  Gastroenterology. 2004;  127 1798-1808
  • 55 Mari M, Caballero F, Collel A et al.. Mitochondrial free cholesterol loading sensitizes to TNF-and Fas-mediated steatohepatitis.  Cell Metab. 2006;  4 185-198
  • 56 Kaplowitz N, Ji C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum.  J Gastroenterol Hepatol. 2006;  21(suppl 3) S7-S9

Neil KaplowitzM.D. 

Professor of Medicine, Keck School of Medicine

University of Southern California, 2011 Zonal Avenue, HMR 101, Los Angeles, CA 90033

Email: kaplowit@usc.edu

    >