Semin Reprod Med 2002; 20(4): 327-338
DOI: 10.1055/s-2002-36707
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Hypogonadotropic Hypogonadism

Leticia F.G. Silveira, Gavin S. MacColl, Pierre M.G. Bouloux
  • Department of Medicine, Neuroendocrine Unit, Royal Free and University College Medical School, London, United Kingdom
Further Information

Publication History

Publication Date:
21 January 2003 (online)

ABSTRACT

Hypogonadotropic hypogonadism is characterized by failure of gonadal function secondary to deficient gonadotropin secretion, resulting from either a pituitary or hypothalamic defect, and is commonly seen in association with structural lesions or functional defects affecting this region. Although the genetic basis for idiopathic hypogonadotropic hypogonadism is largely unknown, mutations in several genes involved in the hypothalamo-pituitary-gonadal axis development and function have recently been implicated in the pathogenesis of this condition. Genes currently recognized to be involved include KAL-1 (associated with X-linked Kallmann Syndrome), gonadotropin-releasing hormone (GnRH) receptor, gonadotropins, pituitary transcription factors (HESX1, LHX3, and PROP-1), orphan nuclear receptors (DAX-1, associated with X-linked adrenal hypoplasia congenital, and SF-1), and three genes also associated with obesity (leptin, leptin receptor, and prohormone convertase 1 [PC1]). Study of these mutations provides an important contribution in the understanding of the different stages of the reproductive axis development and physiology. Treatment options currently available for puberty induction, maintenance replacement therapy, and fertility induction are considered here. Gametogenesis can be induced with either exogenous gonadotropin or pulsatile GnRH therapy, depending on the etiology.

REFERENCES

  • 1 Seeburg P H, Adelman J P. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone.  Nature . 1984;  1311 666-668
  • 2 Themmen A PN, Huhtaniemi I T. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function.  Endocr Rev . 2000;  21 551-583
  • 3 Terasawa E, Fernandez D L. Neurobiological mechanisms of the onset of puberty in primates.  Endocr Rev . 2001;  22 111-151
  • 4 Seminara S B, Hayes F J, Crowley Jr F W. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations.  Endocr Rev . 1998;  19 521-539
  • 5 Winter J S, Faiman C, Hobson W C, Prasad A V, Reyes F I. Pituitary-gonadal relations in infancy I: patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee.  J Clin Endocrinol Metab . 1975;  40 545-551
  • 6 Wu F C, Butler G E, Kelnar C J, Stirling H F, Huhtaniemi I. Patterns of pulsatile luteinizing hormone and follicle-stimulating hormone secretion in prepubertal (midchildhood) boys and girls and patients with idiopathic hypogonadotropic hypogonadism (Kallmann's syndrome): a study using an ultrasensitive time-resolved immunofluorometric assay.  J Clin Endocrinol Metab . 1991;  72 1229-1237
  • 7 Mitamura R, Yano K, Suzuki N, Ito Y, Makita Y, Okuno A. Diurnal rhythms of luteinizing hormone, follicle-stimulating hormone, and testosterone secretion before the onset of male puberty.  J Clin Endocrinol Metab . 1999;  84 29-37
  • 8 Grumbach M M, Styne D M. Puberty: ontogeny, neuroendocrinology, physiology, and disorders. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, eds. Williams' Textbook of Endocrinology Philadelphia: W.B. Saunders 1998: 1509-1625
  • 9 MacColl G, Quinton R, Bouloux P M. GnRH neuronal development: insights into hypogonadotrophic hypogonadism.  Trends Endocrinol Metab . 2002;  13 112-118
  • 10 Quinton R, Duke V M, Robertson A. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization.  Clin Endocrinol (Oxf) . 2001;  55 163-174
  • 11 Quinton R, Duke V M, de Zoysa A P. The neuroradiology of Kallmann's syndrome: a genotypic and phenotypic analysis.  J Clin Endocrinol Metab . 1996;  81 3010-3017
  • 12 Silveira L FG, MacColl G S, Stewart P, Thomas M, Bouloux P MG. Novel homozygous splice site GnRH receptor mutation associated with severe familial hypogonadotropic hypogonadism. Proceedings of the 83nd annual meeting of The Endocrine Society, Denver, 2001
  • 13 Perkins R B, Hall J E, Martin K A. Aetiology, previous menstrual function and patterns of neuro-endocrine disturbance as prognostic indicators in hypothalamic amenorrhoea.  Hum Reprod . 2001;  16 2198-2205
  • 14 Laughlin G A, Yen S SC. Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea.  J Clin Endocrinol Metab . 1997;  82 318-321
  • 15 Miller K K, Parulekar M S, Schoenfeld E. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake.  J Clin Endocrinol Metab . 1998;  83 2309-2312
  • 16 Nachtigall L B, Boepple P A, Pralong F P, Crowley Jr F W. Adult-onset idiopathic hypogonadotropic hypogonadism: a treatable form of male infertility.  N Engl J Med . 1997;  336 410-415
  • 17 Sauder S E, Frager M, Case G D, Kelch R P, Marshall J C. Abnormal patterns of pulsatile luteinizing hormone secretion in women with hyperprolactinemia and amenorrhea: responses to bromocriptine.  J Clin Endocrinol Metab . 1984;  59 941-948
  • 18 Cook C B, Nippoldt T B, Kletter G B, Kelch R P, Marshall J C. Naloxone increases the frequency of pulsatile luteinizing hormone secretion in women with hyperprolactinemia.  J Clin Endocrinol Metab . 1991;  73 1099-1105
  • 19 Cohen P G. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt: a major factor in the genesis of morbid obesity.  Med Hypotheses . 1999;  52 49-51
  • 20 Zumoff B. Hormonal abnormalities in obesity.  Acta Med Scand Suppl . 1988;  723 153-160
  • 21 Mayston M J, Harrison L M, Quinton R, Stephens J A, Krams M, Bouloux P M. Mirror movements in X-linked Kallmann's syndrome: a neurophysiological study.  Brain . 1997;  120 1199-1216
  • 22 Oliveira L M, Seminara S B, Beranova M. The importance of autosomal genes in Kallmann's syndrome: genotype-phenotype correlations and neuroendocrine characteristics.  J Clin Endocrinol Metab . 2001;  86 1532-1538
  • 23 Schwanzel-Fukuda M. Origin and migration of luteinizing hormone-releasing hormone neurons in mammals.  Microsc Res Tech . 1999;  44 2-10
  • 24 Hardelin J P. Kallmann syndrome: towards molecular pathogenesis.  Mol Cell Endocrinol . 2001;  179 75-81
  • 25 Hardelin J P, Julliard A K, Moniot B. Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome.  Dev Dyn . 1999;  215 26-44
  • 26 Robertson A, MacColl G S, Nash J A, Boehm M K, Perkins S J, Bouloux P M. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.  Biochem J . 2001;  357 647-659
  • 27 Mason A J, Hayflick J S, Zoeller R T. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse.  Science . 1986;  234 1366-1371
  • 28 Beranova M, Oliveira L BM, Bedecarrats G Y. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism.  J Clin Endocrinol Metab . 2001;  86 1580-1588
  • 29 Kakar S S, Musgrove L C, Devor D C, Sellers J C, Neill J D. Cloning, sequencing, and expression of human gonadotropin-releasing hormone (GnRH) receptor.  Biochem Biophys Res Commun . 1992;  189 289-295
  • 30 Chi L, Zhou W, Prikhozhan A. Cloning and characterization of the human GnRH receptor.  Mol Cell Endocrinol . 1993;  9 R1-R6
  • 31 Pitteloud N, Boepple P, DeCruz S, Valkenburgh S B, Crowley Jr F W, Hayes F J. The Fertile Eunuch variant of idiopathic hypogonadotropic hypogonadism: spontaneous reversal associated with a homozygous mutation in the gonadotropin-releasing hormone receptor.  J Clin Endocrinol Metab . 2001;  86 2470-2475
  • 32 Pralong F P, Gomez F, Castillo E. Complete hypogonadotropic hypogonadism associated with a novel inactivating mutation of the gonadotropin-releasing hormone receptor.  J Clin Endocrinol Metab . 1999;  84 3811-3816
  • 33 Kottler M L, Chauvin S, Lahlou N. A new compound heterozygous mutation of the gonadotropin-releasing hormone receptor (L314X, Q106R) in a woman with complete hypogonadotropic hypogonadism: chronic estrogen administration amplifies the gonadotropin defect.  J Clin Endocrinol Metab . 2000;  85 3002-3008
  • 34 Soderlund D, Canto P, de la Chesnaye E, Ulloa-Aguirre A, Mendez J P. A novel homozygous mutation in the second transmembrane domain of the gonadotropin releasing hormone receptor gene.  Clin Endocrinol . 2001;  54 493-498
  • 35 Costa E MF, Bedecarrats G Y, Mendonca B B, Arnhold I JP, Kaiser U B, Latronico A C. Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction.  J Clin Endocrinol Metab . 2001;  86 2680-2686
  • 36 De Roux N, Young J, Brailly-Tabard S. The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred. J Clin Endocrinol Metab .  1999;  84 567-572
  • 37 Weiss J, Axelrod L, Whitcomb R W, Harris P E, Crowley W F, Jameson J L. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone.  N Engl J Med . 1992;  326 179-183
  • 38 Matthews C H, Borgato S, Beck-Peccoz P. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone.  Nat Genet . 1993;  5 83-86
  • 39 Layman L C. Mutations in the follicle-stimulating hormone-beta (FSH beta) and FSH receptor genes in mice and humans.  Semin Reprod Med . 2000;  18 5-10
  • 40 Hermesz E, Mackem S, Mahon K A. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo.  Development . 1996;  122 41-52
  • 41 Dattani M T, Robinson I C. The molecular basis for developmental disorders of the pituitary gland in man.  Clin Genet . 2000;  57 337-346
  • 42 Dattani M T, Martinez-Barbera J P, Thomas P Q. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse.  Nat Genet . 1998;  19 125-133
  • 43 Thomas P Q, Dattani M T, Brickman J M. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia.  Hum Mol Genet . 2001;  10 39-45
  • 44 Bridwell J L, Price J R, Parker G E, McCutchan Schiller A, Sloop K W, Rhodes S J. Role of the LIM domains in DNA recognition by the Lhx3 neuroendocrine transcription factor.  Gene . 2001;  277 239-250
  • 45 Sheng H Z, Zhadanov A B, Mosinger Jr B. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3.  Science . 1996;  272 1004-1007
  • 46 Netchine I, Sobrier M L, Krude H. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency.  Nat Genet . 2000;  25 182-186
  • 47 Sloop K W, Dwyer C J, Rhodes S J. An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form.  J Biol Chem . 2001;  276 36311-36319
  • 48 Sornson M W, Wu W, Dasen J S. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism.  Nature . 1996;  384 327-333
  • 49 Deladoey J, Fluck C, Buyukgebiz A. "Hot spot" in the PROP1 gene responsible for combined pituitary hormone deficiency.  J Clin Endocrinol Metab . 1999;  84 1645-1650
  • 50 Wu W, Cogan J D, Pfaffle R W. Mutations in PROP1 cause familial combined pituitary hormone deficiency.  Nat Genet . 1998;  18 147-149
  • 51 Fluck C, Deladoey J, Rutishauser K. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg → Cys at codon 120 (R120C).  J Clin Endocrinol Metab . 1998;  83 3727-3734
  • 52 Parker K L, Schimmer B P. Steroidogenic factor 1: a key determinant of endocrine development and function.  Endocr Rev . 1997;  18 361-377
  • 53 Bakke M, Zhao L, Parker K L. Approaches to define the role of SF-1 at different levels of the hypothalamic-pituitary-steroidogenic organ axis.  Mol Cell Endocrinol . 2001;  179 33-37
  • 54 Achermann J C, Ito M, Ito M, Hindmarsh P C, Jameson J L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans.  Nat Genet . 1999;  22 125-126
  • 55 Muscatelli F, Strom T M, Walker A P. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism.  Nature . 1994;  372 672-676
  • 56 Zanaria E, Muscatelli F, Bardoni B. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita.  Nature . 1994;  372 635-641
  • 57 Zhang Y H, Guo W, Wagner R L, Huang B L. DAX1 mutations provide insight into structure-function relationships in steroidogenic tissue development.  Am J Hum Genet . 1998;  62 855-864
  • 58 Achermann J C, Jameson J L. Advances in the molecular genetics of hypogonadotropic hypogonadism.  J Pediatr Endocrinol Metab . 2001;  14 3-15
  • 59 Reutens A T, Achermann J C, Ito M. Clinical and functional effects of mutations in the DAX-1 gene in patients with adrenal hypoplasia congenita.  J Clin Endocrinol Metab . 1999;  84 504-511
  • 60 Ito M, Yu R, Jameson J L. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita.  Mol Cell Endocrinol . 1997;  17 1476-1483
  • 61 Achermann J C, Weiss J, Lee E J, Jameson J L. Inherited disorders of the gonadotropin hormones.  Mol Cell Endocrinol . 2001;  179 89-96
  • 62 Takahashi T, Shoji Y, Shoji Y, Haraguchi N, Takahashi I, Takada G. Active hypothalamic-pituitary-gonadal axis in an infant with X-linked adrenal hypoplasia congenital.  J Pediatr . 1997;  130 485-488
  • 63 Habiby R L, Boepple P, Nachtigall L, Sluss P M, Crowley Jr F W, Jameson J L. Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production.  J Clin Invest . 1996;  98 1055-1062
  • 64 Seminara S B, Achermann J C, Genel M, Jameson J L, Crowley Jr F W. X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females.  J Clin Endocrinol Metab . 1999;  84 4501-4509
  • 65 Chehab F F, Lim M E, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin.  Nat Genet . 1996;  12 318-320
  • 66 Montague C T, Farooqi I S, Whitehead J P. Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature . 1997;  387 903-908
  • 67 Strobel A, Issad T, Camoin L, Ozata M, Strosberg A D. A leptin missense mutation associated with hypogonadism and morbid obesity.  Nat Genet . 1998;  18 213-215
  • 68 Wauters M, Considine R V, Van Gaal F L. Human leptin: from an adipocyte hormone to an endocrine mediator.  Eur J Endocrinol . 2000;  143 293-311
  • 69 Clement K, Vaisse C, Lahlou N. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature . 1998;  392 398-401
  • 70 Jackson R S, Creemers J W, Ohagi S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene.  Nat Genet . 1997;  16 303-306
  • 71 Hayes F J, Seminara S B, Crowley Jr F W. Hypogonadotropic hypogonadism.  Endocrinol Metab Clin North Am . 1998;  27 739-763
  • 72 Buchter D, Behre H M, Kliesch S, Nieschlag E. Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases.  Eur J Endocrinol . 1998;  139 298-303
  • 73 Liu P Y, Turner L, Rushford D. Efficacy and safety of recombinant human follicle stimulating hormone (Gonal-F) with urinary human chorionic gonadotrophin for induction of spermatogenesis and fertility in gonadotrophin-deficient men.  Hum Reprod . 1999;  14 1540-1545
  • 74 Jones T H, Darne J F. Self-administered subcutaneous human menopausal gonadotrophin for the stimulation of testicular growth and the initiation of spermatogenesis in hypogonadotrophic hypogonadism.  Clin Endocrinol (Oxf) . 1993;  38 203-208
  • 75 Schopohl J. Pulsatile gonadotrophin releasing hormone versus gonadotrophin treatment of hypothalamic hypogonadism in males.  Hum Reprod . 1993;  8 (suppl 2) 175-179
  • 76 Kirk J M, Savage M O, Grant D B, Bouloux P M, Besser G M. Gonadal function and response to human chorionic and menopausal gonadotrophin therapy in male patients with idiopathic hypogonadotrophic hypogonadism.  Clin Endocrinol (Oxf) . 1994;  41 57-63
  • 77 Ginsburg J, Hardiman P. Ovulation induction with human menopausal gonadotropins: a changing scene.  Gynecol Endocrinol . 1991;  5 57-78
  • 78 Seminara S B, Beranova M, Oliveira L M, Martin K A, Crowley Jr F W, Hall J E. Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction and pregnancy in a patient with GnRH receptor mutations.  J Clin Endocrinol Metab . 2000;  85 556-562
  • 79 Martin K A, Hall J E, Adams J M, Crowley Jr F W. Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea.  J Clin Endocrinol Metab . 1993;  77 125-129
    >