Z Gastroenterol 2017; 55(08): 772-778
DOI: 10.1055/s-0043-112657
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Pilze im Darm – das Mykobiom des Darms

Fungi in the gut – the gut mycobiome
Herbert Hof
Further Information

Publication History

20 March 2017

30 May 2017

Publication Date:
10 August 2017 (online)

Zusammenfassung

Viele verschiedene Pilzarten, und zwar Sprosspilze wie auch Schimmelpilze, kommen in Darm eines gesunden Menschen vor und bilden das Mykobiom. Bei Störung der bakteriellen Flora kann sich gegenläufig auch die Pilzflora ändern. Mittels „Pilzdiät“ lässt sich die Zusammensetzung nicht ändern. Einige der Pilze sind vermutlich nur passager nach Nahrungsaufnahme im Darm. Andere dagegen, wie Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum u.v. a.m., gehören zur residenten, autochthonen Flora des Darms. Einerseits haben solche Pilze im Darm durchaus Nutzen, indem sie verwertbare Stoffe herstellen. Rhodotorula z. B. kann Fettstoffe und Carotinoide bilden. Andere können Toxine, z. B. Mykotoxine und prokarzinogene Stoffe, in der Nahrung degradieren. Toxine sowie pathogene Bakterien können von Mannanen der Oberfläche von Pilzen festgehalten und so abtransportiert werden. Auch probiotische Wirkung zur Regulierung der Bakterienflora wird einigen Pilzen zugetraut. Bestimmte Pilzbestandteile, wie etwa Glukane, können das Immunsystem stimulieren. Manche Pilze können den Darm nicht nur asymptomatisch kolonisieren sondern bei bestimmten Situationen, wenn z. B. die Bakterienflora gestört ist, auch nachteilig sein, indem sie entweder mithilfe ihrer Virulenzfaktoren eine Schädigung der Schleimhautepithelien bedingen oder sogar in die Mukosa eindringen und Entzündungen hervorrufen bzw. bei bereits chronisch entzündlichen Prozessen diese verstärken. Pilze können bei der Entstehung von Obesitas mitwirken. Außerdem besteht die Möglichkeit, dass Pilze im Darm ein Reservoir finden, von dem aus sie sich bei günstiger Gelegenheit in andere Körperregionen ausbreiten können.

Abstract

Many different fungi, including yeasts and molds, can be found in the intestinal tract of humans constituting the gut mycobiome. In case the bacterial flora is altered, the fungal flora may react inversely. By a so-called fungal diet, however, the composition of the mycobiome can hardly be influenced. Whereas some fungi are only transiently present in the gut after oral uptake, others, such as Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum, amongst others, are members of the residential, autochthonous gut flora. Some of these fungi exert beneficial effects, for example by synthesizing useful materials. Rhodotorula can produce fatty acids and carotenoids. Others are able to metabolize toxic compounds, for example mycotoxins as well as procarcinogenic items in food. Toxins, as well as pathogenic bacteria, can be bound to mannans on the surface of fungi und can consequently be exported. Some fungi are said to exert probiotic activities. Certain fungal constituents, such as glucans, may even stimulate the immune system. On the other hand, some fungi cannot only colonize the gut asymptomatically but can also be noxious under certain conditions when, for example, the bacterial flora is disturbed. By means of their virulence factors, they can damage the gut epithelium and even penetrate into the Mukosa inducing inflammation, They can also aggravate chronic inflammatory processes. Fungi play a role in the development of obesity. Lastly, fungi in the gut represent a reservoir from which they may spread to other sites when the conditions are favorable.

 
  • Literatur

  • 1 Arumugam M, Raes J, Pelletier E. et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-180
  • 2 Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int 2009; 106: 837-842
  • 3 Frykman PK, Nordenskjöld A, Kawaguchi A. et al. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLoS One 2015; 10: e0124172
  • 4 Hoffmann C, Dollive S, Grunberg S. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 2013; 8: e66019
  • 5 Mar Rodríguez M, Pérez D, Javier Chaves F. et al. Obesity changes the human gut mycobiome. Sci Rep 2015; 5: 14600
  • 6 Seed PC. The human mycobiome. Cold Spring Harb Perspect Med 2014; 5: a019810
  • 7 Tang J, Iliev ID, Brown J. et al. Mycobiome: Approaches to analysis of intestinal fungi. J Immunol Methods 2015; 421: 112-121
  • 8 Kumamoto CA. The fungal mycobiota: small numbers, large impacts. Cell Host Microbe 2016; 19: 750-751
  • 9 Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence 2016; 13: 1-7
  • 10 Iliev ID, Funari VA, Taylor KD. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 336: 1314-1317
  • 11 Kühbacher T, Ott SJ, Helwig U. et al. Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55: 833-841
  • 12 Moré MI, Swidsinski A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clin Exp Gastroenterol 2015; 8: 237-255
  • 13 Rieth H. Mykosen-Anti-Pilz-Diät in 50 Folgen. Melsungen: notamed Verlag; 1988
  • 14 Gunsalus KT, Tornberg-Belanger SN, Matthan NR. et al. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans. mSphere 2015; 1 DOI: pii: e00020-15.
  • 15 Chehoud C, Albenberg LG, Judge C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2015; 21: 1948-1956
  • 16 Xu XL, Lee RT, Fang HM. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008; 4: 28-39
  • 17 Wheeler ML, Limon JJ, Bar AS. et al. Immunological Consequences of Intestinal Fungal ysbiosis. Cell Host Microbe 2016; 19: 865-873
  • 18 Yamaguchi N, Sugita R, Miki A. et al. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the Mukosal barrier in mice. Gut 2006; 55: 954-960
  • 19 Moyes DL, Wilson D, Richardson JP. et al. Candidalysin is a fungal peptide toxin critical for Mukosal infection. Nature 2016; 532: 64-68
  • 20 Hof H. Medizinische Relevanz der Mykotoxine. Dtsch Med Wochenschr 2008; 133: 1084-1088
  • 21 Grenier B, Applegate TJ. Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins (Basel) 2013; 5: 396-430
  • 22 Lopez-Medina E, Fan D, Coughlin LA. et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog 2015; 11: e1005129
  • 23 Kostoulias X, Murray GL, Cerqueira GM. et al. Impact of a cross-kingdom signaling molecule of Candida albicans on Acinetobacter baumannii physiology. Antimicrob Agents Chemother 2015; 60: 161-116
  • 24 Helmecke G. Contaminated food. Dtsch Ärzteblatt Int 2010; 107: 368-369
  • 25 Luan C, Xie L, Yang X. et al. Dysbiosis of fungal microbiota in the intestinal Mukosa of patients with colorectal adenomas. Sci Rep 2015; 5: 7980
  • 26 Moyes DL, Naglik JR. The mycobiome: influencing IBD severity. Cell Host Microbe 2012; 11: 551-552
  • 27 Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol 2011; 14: 386-391
  • 28 Mukherjee PK, Sendid B, Hoarau G. et al. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2015; 12: 77-87
  • 29 Jabra-Rizk MA, Kong EF, Tsui C. et al. Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infect Immun 2016; 84: 2724-2739
  • 30 Volkheimer G. Persorption. Stuttgart: Thieme Verlag; 1972
  • 31 Li Q, Wang C, Tang C. et al. Dysbiosis of gut fungal microbiota is associated with Mukosal inflammation in Crohn's disease. J Clin Gastroenterol 2014; 48: 513-523
  • 32 Swidsinski A, Loening-Baucke V, Herber A. Mukosal flora in Crohn's disease and ulcerative colitis – an overview. J Physiol Pharmacol 2009; 60 (Suppl. 06) 61-71
  • 33 Sokol H, Leducq V, Aschard H. et al. Fungal microbiota dysbiosis in IBD. Gut 2016; 66: 1039-1048
  • 34 Ott SJ, Kühbacher T, Musfeldt M. et al. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 2008; 43: 831-841
  • 35 Zwolinska-Wcislo M, Brzozowski T, Budak A. et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J Physiol Pharmacol 2009; 60: 107-118
  • 36 Barton C, Vigor K, Scott R. et al. Beta-glucan contamination of pharmaceutical products: How much should we accept?. Cancer Immunol Immunother 2016; 65: 1289-1301
  • 37 Gedek BR. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999; 42: 261-264
  • 38 Tiago FC, Martins FS, Souza EL. et al. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 2012; 61: 1194-1207
  • 39 Martins FS, Vieira AT, Elian SD. et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect 2013; 15: 270-279
  • 40 Hatoum R, Labrie S, Fliss I. Identification and Partial Characterization of Antilisterial Compounds Produced by Dairy Yeasts. Probiotics Antimicrob Proteins 2013; 5: 8-17
  • 41 Molnar O, Schatzmayr G, Fuchs E. et al. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 2004; 27: 661-671
  • 42 Vekiru E, Hametner C, Mitterbauer R. et al. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 2010; 76: 2353-2359
  • 43 Huang X, Zhang X, Feng F. et al. Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10. Prep Biochem Biotechnol 2016; 46: 15-22
  • 44 Pacia MZ, Pukalski J, Turnau K. et al. Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide decomposition – Raman imaging study. Chemosphere 2016; 164: 1-6
  • 45 Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 2012; 3: 421
  • 46 Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 2009; 36: 163-180
  • 47 Kot AM, Błażejak S, Kurcz A. et al. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 2016; 100: 6103-6117
  • 48 Zaborin A, Smith D, Garfield K. et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio 2014; 5: e01361-14
  • 49 Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials--a mycologist's perspective. Mycologia 2015; 107: 1057-1073
  • 50 Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol 2013; 21: 334-341
  • 51 Hof H. Pilze im Darm. Was nun?. Med Welt 1995; 46: 219-221
  • 52 Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008; 8: 685-698
  • 53 Sirisinha S. The pleiotropic role of vitamin A in regulating Mukosal immunity. Asian Pac J Allergy Immunol 2015; 33: 71-89
  • 54 Hossain MI, Haque R, Mondal D. et al. Undernutrition, Vitamin A and Iron Deficiency Are Associated with Impaired Intestinal Mukosal Permeability in Young Bangladeshi Children Assessed by Lactulose/Mannitol Test. PLoS One 2016; 11: e0164447
  • 55 Alkhouri RH, Hashmi H, Baker RD. et al. Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2013; 56: 89-92