Handchir Mikrochir Plast Chir 2017; 49(02): 111-122
DOI: 10.1055/s-0042-123706
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Entwicklung eines neuen Zellisolationsverfahrens zur Erforschung der Mammakarzinompathogenese und -angiogenese für experimentelle in vitro und in vivo Assays

Development of an Innovative Cell Isolation Method for the Investigation of Breast Cancer Pathogenesis and Angiogenesis for Experimental In Vitro And In Vivo Assays
Annika Weigand
1   Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Kereshmeh Tasbihi
1   Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Pamela L. Strissel
2   Department of Obstetrics and Gynaecology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Reiner Strick
2   Department of Obstetrics and Gynaecology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Raymund E. Horch
1   Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Anja M. Boos
1   Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
› Author Affiliations
Further Information

Publication History

eingereicht 11 October 2016

akzeptiert   02 December 2016

Publication Date:
05 April 2017 (online)

Zusammenfassung

Hintergrund Brustkrebs gilt als die weltweit häufigste Krebserkrankung bei Frauen. Zunehmend wird autologer Lipotransfer zum Wiederaufbau der Brust nach Tumorresektion angewandt. Im zellunterstützenden Lipotransfer wird das Transplantat mit Stammzellen aus dem Fettgewebe (ADSC) angereichert. Trotz der positiven klinischen Ergebnisse gibt es aufgrund des Stammzellanteils Bedenken hinsichtlich der onkologischen Sicherheit. Bislang gibt es nur wenige Studien mit primären Zellen aus derselben Patientin, durch die es möglich werden könnte die Komplexität der Zell-Zell-Interaktionen im Mamma(karzinom)gewebe besser in experimentellen Settings darzustellen.

Material und Methoden Es wurde eine Literaturrecherche zum Thema autologer Lipotransfer durchgeführt. Aus Mamma(karzinom)gewebe, bzw. Blut wurden 5 unterschiedliche Zelltypen (epitheliale, mesenchymale Zellen, ADSC, Endothelzellen, endotheliale Progenitorzellen) isoliert und nachfolgend hinsichtlich ihrer Gen- und Proteinexpression sowie funktioneller Eigenschaften charakterisiert. Das arteriovenöse (AV) loop Modell in der Ratte wurde als mögliches in vivo Modell für die Mammakarzinompathogenese und -angiogenese im Rahmen dieser Studie evaluiert.

Ergebnisse In der Literatur konnten Hinweise auf eine in vitro Interaktion zwischen ADSC und Zellen des Mamma(karzinom)gewebes gefunden werden. In einigen klinischen Studien erschienen bestimmte Patientensubgruppen einem erhöhten Tumorrezidivrisiko nach Lipotransfer ausgesetzt zu sein, jedoch konnte in der Mehrzahl der Studien kein Zusammenhang zwischen Lipotransfer und Rezidivrate festgestellt werden. Aus Gewebe derselben Patientin konnten unterschiedliche Zellpopulationen isoliert werden, die sich hinsichtlich ihrer Oberflächenmarker, der Genexpression sowie funktioneller Eigenschaften deutlich voneinander differenzieren lassen. Im AV loop Modell konnte erfolgreich axial vaskularisiertes Gewebe gezüchtet werden.

Schlussfolgerung Anhand dieser Studie können wir erstmalig zeigen, dass aus derselben Gewebeprobe unterschiedliche Zellpopulationen isoliert werden können, die die Heterogenität im Tumorgewebe widerspiegeln. Dadurch werden exakte Analysen der Zell-Zell-Interaktionen und ihre Auswirkungen auf die Tumorangiogenese und -pathogenese im Mammakarzinom möglich. In Kombination mit dem AV loop Modell könnten neue Wege eröffnet werden vaskularisiertes Mammakarzinom- sowie gesundes Mammagewebe in vivo als optimales Modell für das klinische Setting zu generieren.

Abstract

Background Breast cancer is the world’s most common cancer among women. Autologous lipotransfer is increasingly used for breast reconstruction following surgical removal of the tumour. In cell-assisted lipotransfer, the transplant is enriched with stem cells from adipose tissue (ADSC). Despite positive clinical results, there are some concerns regarding oncological safety due to transplanted stem cells. To date there are only a few breast cancer studies using primary cells from the same patient to enable further investigation into the complexity of cell-cell interactions in breast cancer in an experimental setting.

Materials and methods We performed literature research on the topic of autologous lipotransfer. 5 different cell types (epithelial, mesenchymal cells, ADSC, endothelial cells, endothelial progenitor cells) were isolated from mammary (carcinoma) tissue or blood and were subsequently characterised for gene and protein expression as well as functional properties. The arteriovenous (AV) loop model in the rat was evaluated as a possible in vivo model for breast cancer pathogenesis and angiogenesis in this study.

Results The literature provided evidence for an in-vitro interaction between ADSC and cells of the mammary (carcinoma) tissue. In some clinical studies, certain subgroups of patients appeared to be exposed to an increased risk of tumour recurrence after lipotransfer, but in most studies no correlation between lipotransfer and tumour recurrence was found. Different cell populations, which differed significantly in terms of surface markers, gene expression and functional properties, were isolated from tissue of the same patient. Axial vascularised tissue was successfully generated in the AV loop model.

Conclusion In this study we were able to isolate different cell populations from the same patient, which reflect the heterogeneity of the tumour tissue. This enables a precise analysis of cell-cell interactions and their effects on tumour angiogenesis and pathogenesis in breast cancer. In combination with the AV loop model, this offers new possibilities to generate vascularised mammary carcinoma tissue as well as healthy mammary gland tissue in vivo as an optimal model for the clinical setting.

 
  • Literatur

  • 1 IARC. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx In; 2012
  • 2 Voineskos SH, Frank SG, Cordeiro PG. Breast reconstruction following conservative mastectomies: Predictors of complications and outcomes. Gland surgery 2015; 4: 484-496
  • 3 Missana MC, Laurent I, Barreau L. et al. Autologous fat transfer in reconstructive breast surgery: Indications, technique and results. Ejso-Eur J Surg Onc 2007; 33: 685-690
  • 4 Yoshimura K, Sato K, Aoi N. et al. Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32: 48-55 discussion 56-47
  • 5 Conde-Green A, Wu I, Graham I. et al. Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: A pilot study. Aesthet Surg J 2013; 33: 713-721
  • 6 Feisst V, Meidinger S, Locke MB. From bench to bedside: Use of human adipose-derived stem cells. Stem cells and cloning: Advances and applications 2015; 8: 149-162
  • 7 Prantl L, Heine N. Options for regenerative therapy in the field of breast surgery. Handchir Mikrochir Plast Chir 2012; 44: 103-111
  • 8 Rietjens M, De Lorenzi F, Rossetto F. et al. Safety of fat grafting in secondary breast reconstruction after cancer. J Plast Reconstr Aesthet Surg 2011; 64: 477-483
  • 9 Pearl RA, Leedham SJ, Pacifico MD. The safety of autologous fat transfer in breast cancer: Lessons from stem cell biology. J Plast Reconstr Aesthet Surg 2012; 65: 283-288
  • 10 Bertolini F. Adipose tissue and breast cancer progression: A link between metabolism and cancer. Breast 2013; 22S2: S48-S49
  • 11 Kronowitz SJ, Mandujano CC, Liu J. et al. Lipofilling of the Breast Does Not Increase the Risk of Recurrence of Breast Cancer: A Matched Controlled Study. Plastic and reconstructive surgery 2016; 137: 385-393
  • 12 Huang S, Zhao W, Wang Z. et al. Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review). Mol Med Rep 2016; 13: 1063-1069
  • 13 Le Bourhis X, Romon R, Hondermarck H. Role of endothelial progenitor cells in breast cancer angiogenesis: From fundamental research to clinical ramifications. Breast cancer research and treatment 2010; 120: 17-24
  • 14 Nolan DJ, Ciarrocchi A, Mellick AS. et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & development 2007; 21: 1546-1558
  • 15 Richter-Ehrenstein C, Rentzsch J, Runkel S. et al. Endothelial progenitor cells in breast cancer patients. Breast cancer research and treatment 2007; 106: 343-349
  • 16 Eterno V, Zambelli A, Pavesi L. et al. Adipose-derived Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget 2014; 5: 613-633
  • 17 Weigand A, Boos AM, Tasbihi K. et al. Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells. Breast Cancer Research 2016; 18: 1-20
  • 18 Yuan Q, Bleiziffer O, Boos AM et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol 2014; 14
  • 19 Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ. et al. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 2001; 280: E827-E847
  • 20 Ligibel J. Obesity and breast cancer. Oncology (Williston Park) 2011; 25: 994-1000
  • 21 Hou WK, Xu YX, Yu T. et al. Adipocytokines and breast cancer risk. Chin Med J (Engl) 2007; 120: 1592-1596
  • 22 Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 2007; 14: 189-206
  • 23 Iyengar P, Espina V, Williams TW. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 2005; 115: 1163-1176
  • 24 Iyengar P, Combs TP, Shah SJ. et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 2003; 22: 6408-6423
  • 25 Dirat B, Bochet L, Dabek M. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011; 71: 2455-2465
  • 26 Levine JF, Stockdale FE. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp Cell Res 1984; 151: 112-122
  • 27 Levine JF, Stockdale FE. Cell-cell interactions promote mammary epithelial cell differentiation. The Journal of cell biology 1985; 100: 1415-1422
  • 28 Creydt V, Sacca P, Tesone A. et al. Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells. Molecular medicine reports 2010; 3: 433
  • 29 Muehlberg FL, Song YH, Krohn A. et al. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 2009; 30: 589-597
  • 30 Jotzu C, Alt E, Welte G. et al. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr) 2011; 34: 55-67
  • 31 Devarajan E, Song YH, Krishnappa S. et al. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer 2012; 131: 1023-1031
  • 32 Yu JM, Jun ES, Bae YC. et al. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 2008; 17: 463-473
  • 33 Yan XL, Fu CJ, Chen L. et al. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat 2012; 132: 153-164
  • 34 Pinilla S, Alt E, Abdul Khalek FJ. et al. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 2009; 284: 80-85
  • 35 Kamat P, Schweizer R, Kaenel P. et al. Human Adipose-Derived Mesenchymal Stromal Cells May Promote Breast Cancer Progression and Metastatic Spread. Plastic and reconstructive surgery 2015; 136: 76-84
  • 36 Johnston PG, Rondinone CM, Voeller D. et al. Identification of a protein factor secreted by 3T3-L1 preadipocytes inhibitory for the human MCF-7 breast cancer cell line. Cancer Res 1992; 52: 6860-6865
  • 37 Manabe Y, Toda S, Miyazaki K. et al. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol 2003; 201: 221-228
  • 38 Kucerova L, Kovacovicova M, Polak S. et al. Interaction of human adipose tissue-derived mesenchymal stromal cells with breast cancer cells. Neoplasma 2011; 58: 361-370
  • 39 Petit JY, Botteri E, Lohsiriwat V. et al. Locoregional recurrence risk after lipofilling in breast cancer patients. Ann Oncol 2012; 23: 582-588
  • 40 Petit JY, Rietjens M, Botteri E. et al. Evaluation of fat grafting safety in patients with intraepithelial neoplasia: A matched-cohort study. Ann Oncol 2013; 24: 1479-1484
  • 41 Perrot P, Rousseau J, Bouffaut AL. et al. Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One 2010; 5: e10999
  • 42 Largo RD, Tchang LA, Mele V. et al. Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: A systematic review. J Plast Reconstr Aesthet Surg 2014; 67: 437-448
  • 43 Al Sufyani MA, Al Hargan AH, Al Shammari NA. Autologous Fat Transfer for Breast Augmentation: A Review Dermatologic surgery: Official publication for American Society for Dermatologic Surgery [et al.]. 2016; DOI: 10.1097/DSS.0000000000000791.
  • 44 Headon H, Kasem A, Mokbel K. Capsular Contracture after Breast Augmentation: An Update for Clinical Practice. Archives of plastic surgery 2015; 42: 532-543
  • 45 Baek WY, Lew DH, Lee DW. A retrospective analysis of ruptured breast implants. Archives of plastic surgery 2014; 41: 734-739
  • 46 Nelissen X, Lhoest F, Preud’Homme L. Refined Method of Lipofilling following DIEP Breast Reconstruction: 3D Analysis of Graft Survival. Plastic and reconstructive surgery Global open 2015; 3: e526
  • 47 Enajat M, Smit JM, Rozen WM. et al. Aesthetic refinements and reoperative procedures following 370 consecutive DIEP and SIEA flap breast reconstructions: Important considerations for patient consent. Aesthetic Plast Surg 2010; 34: 306-312
  • 48 Neuber G. Fetttransplantation. Verhandlungen der Deutschen Gesellschaft für Chirurgie 1893; 22: 66
  • 49 Suga H, Glotzbach JP, Sorkin M. et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Annals of plastic surgery 2014; 72: 234-241
  • 50 Salgado AJ, Reis RL, Sousa NJ. et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current stem cell research & therapy 2010; 5: 103-110
  • 51 Marini F, Luzi E, Fabbri S. et al. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr. Clinical cases in mineral and bone metabolism: The official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases 2015; 12: 224-237
  • 52 Apdik H, Dogan A, Demirci S. et al. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs). Biological trace element research 2015; 165: 123-130
  • 53 Xie F, Tang X, Zhang Q. et al. Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Mol Med Rep 2015; 11: 182-188
  • 54 Yang J, Xiong L, Wang R. et al. In vitro expression of cytokeratin 18, 19 and tube formation of adipose-derived stem cells induced by the breast epithelial cell line HBL-100. J Cell Mol Med 2015; 19: 2827-2831
  • 55 Lohsiriwat V, Curigliano G, Rietjens M. et al. Autologous fat transplantation in patients with breast cancer: „silencing“ or „fueling“ cancer recurrence?. Breast 2011; 20: 351-357
  • 56 Silva-Vergara C, Fontdevila J, Descarrega J. et al. Oncological outcomes of lipofilling breast reconstruction: 195 consecutive cases and literature review. J Plast Reconstr Aesthet Surg 2016; DOI: 10.1016/j.bjps.2015.12.029.
  • 57 Russe E, Scholler T, Hussl H. et al. Autologous fat grafting in breast surgery: Results of a retrospective study. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen 2015; 86: 476-481
  • 58 Mishra PJ, Humeniuk R, Medina DJ. et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68: 4331-4339
  • 59 Chandler EM, Seo BR, Califano JP. et al. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences of the United States of America 2012; 109: 9786-9791
  • 60 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature reviews Cancer 2006; 6: 392-401
  • 61 Hutmacher DW, Horch RE, Loessner D. et al. Translating tissue engineering technology platforms into cancer research. Journal of cellular and molecular medicine 2009; 13: 1417-1427
  • 62 Wang XY, Ju S, Li C. et al. Non-invasive imaging of endothelial progenitor cells in tumor neovascularization using a novel dual-modality paramagnetic/near-infrared fluorescence probe. PloS one 2012; 7: e50575
  • 63 Patenaude A, Parker J, Karsan A. Involvement of endothelial progenitor cells in tumor vascularization. Microvascular research 2010; 79: 217-223
  • 64 Horch RE, Boos AM, Quan Y. et al. Cancer research by means of tissue engineering–is there a rationale?. J Cell Mol Med 2013; 17: 1197-1206
  • 65 Arkudas A, Pryymachuk G, Hoereth T. et al. Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue engineering Part A 2009; 15: 2501-2511
  • 66 Weigand A, Beier JP, Hess A. et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue engineering Part A 2015; 21: 1680-1694