Horm Metab Res 2017; 49(04): 240-249
DOI: 10.1055/s-0042-110791
Review

Systematic Quantification of GPCR/cAMP-Controlled Protein Kinase A Interactions

O. Torres-Quesada*
1   Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
,
R. Röck*
1   Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
,
E. Stefan
1   Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
› Author Affiliations

Abstract

The diffusible second messenger cyclic AMP (cAMP) originates from multiple G protein-coupled receptor (GPCR) cascades activating the intracellular key effector protein kinase A (PKA). Spatially and temporally restricted cAMP-fluxes are directly sensed by macromolecular PKA complexes. The consequences are alterations of molecular interactions, which lead to activation of compartmentalized PKA phosphotransferase activities, regulating a vast array of cellular functions. To decode cell-type and cell-compartment specific PKA functions, the spatio-temporal dynamics of small molecule:protein interactions, protein:protein interactions (PPIs), cAMP-mobilization, and phosphotransferase activities need to be determined directly in the appropriate cellular context. A collection of cell-based reporters has been developed to either visualize or quantitatively measure kinase activities or PKA complex formation/dissociation. In this review, we list a collection of unimolecular and bimolecular PKA biosensors, followed by the specification of the modular design of a Renilla luciferase based protein-fragment complementation assay (PCA) platform for measuring PKA network interactions. We discuss the application spectrum of the PCA reporter to identify, quantify, and dissect dynamic and transient PKA complexes downstream of specific GPCR activities. We specify the implementation of a PCA PKA platform to systematically quantify the concurrent involvement of receptor-cAMP signaling, post-translational modifications, and kinase subunit mutations/perturbations in PKA activation. The systematic quantification of transient PKA network interactions will contribute to a better understanding how GPCR-recognized input signals are streamlined through the compartmentalized and cAMP-interacting PKA signalosome.

* These authors contributed equally to this work




Publication History

Received: 04 May 2016

Accepted: 13 June 2016

Article published online:
02 August 2016

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they’re apart. Science 2009; 326: 1220-1224
  • 2 Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science 2011; 332: 680-686
  • 3 Langeberg LK, Scott JD. Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol 2015; 16: 232-244
  • 4 Taylor SS, Ilouz R, Zhang P, Kornev AP. Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 2012; 13: 646-658
  • 5 Good M, Tang G, Singleton J, Remenyi A, Lim WA. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 2009; 136: 1085-1097
  • 6 Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 2009; 461: 542-545
  • 7 Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K, Dai AY, Bagshaw R, Dennis JW, Gingras AC, Daly RJ, Pawson T. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 2013; 499: 166-171
  • 8 Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 2016; DOI: 10.1038/nrd.2016.29.
  • 9 O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13: 412-424
  • 10 Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002; 3: 639-650
  • 11 Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011; 10: 47-60
  • 12 Lefkowitz RJ. Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) 2007; 190: 9-19
  • 13 Li X, Wang X, Snyder M. Systematic investigation of protein-small molecule interactions. IUBMB Life 2013; 65: 2-8
  • 14 Clapham DE. Calcium signaling. Cell 2007; 131: 1047-1058
  • 15 O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13: 412-424
  • 16 Tobin AB, Butcher AJ, Kong KC. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 2008; 29: 413-420
  • 17 Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS. Structure and allostery of the PKA RIIbeta tetrameric holoenzyme. Science 2012; 335: 712-716
  • 18 Haste NM, Talabani H, Doo A, Merckx A, Langsley G, Taylor SS. Exploring the Plasmodium falciparum cyclic-adenosine monophosphate (cAMP)-dependent protein kinase (PfPKA) as a therapeutic target. Microbes Infect 2012; 14: 838-850
  • 19 Dalton GD, Dewey WL. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 2006; 40: 23-34
  • 20 Walsh DA, Ashby CD, Gonzalez C, Calkins D, Fischer EH, Krebs EG. Purification and characterization of a protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinases. J Biol Chem 1971; 246: 1977-1985
  • 21 Scott JD, Fischer EH, Demaille JG, Krebs EG. Identification of an inhibitory region of the heat-stable protein inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1985; 82: 4379-4383
  • 22 Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005; 85: 1303-1342
  • 23 Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 2003; 4: 733-738
  • 24 Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002; 82: 769-824
  • 25 Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 2011; 91: 651-690
  • 26 Baillie GS, Scott JD, Houslay MD. Compartmentalisation of phosphodiesterases and protein kinase A: opposites attract. FEBS Lett 2005; 579: 3264-3270
  • 27 Skroblin P, Grossmann S, Schafer G, Rosenthal W, Klussmann E. Mechanisms of protein kinase A anchoring. Int Rev Cell Mol Biol 2010; 283: 235-330
  • 28 Rogne M, Tasken K. Compartmentalization of cAMP signaling in adipogenesis, lipogenesis, and lipolysis. Horm Metab Res 2014; 46: 833-840
  • 29 Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong NH, Jennings PA, Taylor SS. A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 2006; 24: 397-408
  • 30 Pawson CT, Scott JD. Signal integration through blending, bolstering and bifurcating of intracellular information. Nat Struct Mol Biol 2010; 17: 653-658
  • 31 Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004; 5: 959-970
  • 32 Sato Y, Maekawa S, Ishii R, Sanada M, Morikawa T, Shiraishi Y, Yoshida K, Nagata Y, Sato-Otsubo A, Yoshizato T, Suzuki H, Shiozawa Y, Kataoka K, Kon A, Aoki K, Chiba K, Tanaka H, Kume H, Miyano S, Fukayama M, Nureki O, Homma Y, Ogawa S. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 2014; 344: 917-920
  • 33 Espiard S, Ragazzon B, Bertherat J. Protein kinase a alterations in adrenocortical tumors. Horm Metab Res 2014; 46: 869-875
  • 34 Cao Y, He M, Gao Z, Peng Y, Li Y, Li L, Zhou W, Li X, Zhong X, Lei Y, Su T, Wang H, Jiang Y, Yang L, Wei W, Yang X, Jiang X, Liu L, He J, Ye J, Wei Q, Li Y, Wang W, Wang J, Ning G. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 2014; 344: 913-917
  • 35 Cheung J, Ginter C, Cassidy M, Franklin MC, Rudolph MJ, Robine N, Darnell RB, Hendrickson WA. Structural insights into mis-regulation of protein kinase A in human tumors. Proc Natl Acad Sci USA 2015; 112: 1374-1379
  • 36 Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim II, Gleason CE, Murphy JM, Rosenberg BR, Teegan L, Takacs CN, Botero S, Belote R, Germer S, Emde AK, Vacic V, Bhanot U, LaQuaglia MP, Simon SM. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 2014; 343: 1010-1014
  • 37 Zilbermint M, Stratakis CA. Protein kinase A defects and cortisol-producing adrenal tumors. Curr Opin Endocrinol Diabetes Obes 2015; 22: 157-162
  • 38 Silve C, Clauser E, Linglart A. Acrodysostosis. Horm Metab Res 2012; 44: 749-758
  • 39 Linglart A, Menguy C, Couvineau A, Auzan C, Gunes Y, Cancel M, Motte E, Pinto G, Chanson P, Bougneres P, Clauser E, Silve C. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med 2011; 364: 2218-2226
  • 40 Wong TH, Chiu WZ, Breedveld GJ, Li KW, Verkerk AJ, Hondius D, Hukema RK, Seelaar H, Frick P, Severijnen LA, Lammers GJ, Lebbink JH, van Duinen SG, Kamphorst W, Rozemuller AJ, Netherlands Brain B, Bakker EB, International Parkinsonism Genetics N. Neumann M, Willemsen R, Bonifati V, Smit AB, van Swieten J. PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 2014; 137: 1361-1373
  • 41 Stratakis CA, Bertherat J. PDE 2013, Paris, France: another exciting workshop for cyclic AMP, protein kinase A, and phosphodiesterases. Horm Metab Res 2014; 46: 825-826
  • 42 Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005; 272: 3491-3504
  • 43 Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 2008; 20: 1592-1607
  • 44 Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 2002; 12: 258-266
  • 45 Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006; 12: 939-944
  • 46 Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets 2013; 17: 937-949
  • 47 Coffino P, Bourne HR, Tomkins GM. Mechanism of lymphoma cell death induced by cyclic AMP. Am J Pathol 1975; 81: 199-204
  • 48 Bachmann VA, Riml A, Huber RG, Baillie GS, Liedl KR, Valovka T, Stefan E. Reciprocal regulation of PKA and Rac signaling. Proc Natl Acad Sci USA 2013; 110: 8531-8536
  • 49 Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002; 3: 906-918
  • 50 Hochreiter B, Pardo-Garcia A, Schmid J. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences. Sensors 2015; 15: 26281
  • 51 Zhou X, Herbst-Robinson KJ, Zhang J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 2012; 504: 317-340
  • 52 Calebiro D, Sungkaworn T, Maiellaro I. Real-time monitoring of GPCR/cAMP signalling by FRET and single-molecule microscopy. Horm Metab Res 2014; 46: 827-832
  • 53 Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 1991; 349: 694-697
  • 54 Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002; 295: 1711-1715
  • 55 Allen MD, Zhang J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 2006; 348: 716-721
  • 56 Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 2005; 437: 569-573
  • 57 Zhang J, Ma Y, Taylor SS, Tsien RY. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci USA 2001; 98: 14997-15002
  • 58 Depry C, Allen MD, Zhang J. Visualization of PKA activity in plasma membrane microdomains. Mol Biosyst 2011; 7: 52-58
  • 59 Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 2011; 22: 4647-4656
  • 60 Fagan KA, Rich TC, Tolman S, Schaack J, Karpen JW, Cooper DM. Adenovirus-mediated expression of an olfactory cyclic nucleotide-gated channel regulates the endogenous Ca2+-inhibitable adenylyl cyclase in C6-2B glioma cells. J Biol Chem 1999; 274: 12445-12453
  • 61 Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 2000; 116: 147-161
  • 62 Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 2001; 118: 63-78
  • 63 Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2000; 2: 25-29
  • 64 Nagai Y, Miyazaki M, Aoki R, Zama T, Inouye S, Hirose K, Iino M, Hagiwara M. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nat Biotechnol 2000; 18: 313-316
  • 65 Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 2006; 99: 1084-1091
  • 66 DiPilato LM, Cheng X, Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci USA 2004; 101: 16513-16518
  • 67 Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ. beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 2008; 283: 2949-2961
  • 68 Prinz A, Diskar M, Erlbruch A, Herberg FW. Novel isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cell Signal 2006; 18: 1616-1625
  • 69 Barak LS, Salahpour A, Zhang X, Masri B, Sotnikova TD, Ramsey AJ, Violin JD, Lefkowitz RJ, Caron MG, Gainetdinov RR. Pharmacological characterization of membrane-expressed human trace amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor. Mol Pharmacol 2008; 74: 585-594
  • 70 Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T, Hsueh R, Rebres RA, Ross EM, Taussig R, Fraser I, Sternweis PC. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 2007; 282: 10576-10584
  • 71 De A, Jasani A, Arora R, Gambhir SS. Evolution of BRET Biosensors from Live Cell to Tissue-Scale In vivo Imaging. Front Endocrinol (Lausanne) 2013; 4: 131
  • 72 Sprenger JU, Nikolaev VO. Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 2013; 14: 8025-8046
  • 73 Rock R, Bachmann V, Bhang HE, Malleshaiah M, Raffeiner P, Mayrhofer JE, Tschaikner PM, Bister K, Aanstad P, Pomper MG, Michnick SW, Stefan E. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs. Sci Rep 2015; 5: 11133
  • 74 Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 2007; 6: 569-582
  • 75 Kerppola TK. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 2006; 7: 449-456
  • 76 Tchekanda E, Sivanesan D, Michnick SW. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat Methods 2014; 11: 641-644
  • 77 Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal Chem 2003; 75: 4176-4181
  • 78 Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 2004; 101: 12288-12293
  • 79 Paulmurugan R, Gambhir SS. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 2003; 75: 1584-1589
  • 80 Spotts JM, Dolmetsch RE, Greenberg ME. Time-lapse imaging of a dynamic phosphorylation-dependent protein-protein interaction in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 15142-15147
  • 81 Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM. Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proc Natl Acad Sci USA 2002; 99: 3469-3474
  • 82 Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 2003; 21: 539-545
  • 83 Remy I, Michnick SW. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Meth 2006; 3: 977-979
  • 84 Boute N, Lowe P, Berger S, Malissard M, Robert A, Tesar M. NanoLuc Luciferase – A Multifunctional Tool for High Throughput Antibody Screening. Front Pharmacol 2016; 7: 27
  • 85 Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci USA 2007; 104: 16916-16921
  • 86 Rock R, Mayrhofer JE, Bachmann V, Stefan E. Impact of kinase activating and inactivating patient mutations on binary PKA interactions. Front Pharmacol 2015; 6: 170
  • 87 Raffeiner P, Rock R, Schraffl A, Hartl M, Hart JR, Janda KD, Vogt PK, Stefan E, Bister K. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential. Oncotarget 2014; 5: 8869-8878
  • 88 Stefan E, Malleshaiah MK, Breton B, Ear PH, Bachmann V, Beyermann M, Bouvier M, Michnick SW. PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades. Nat Commun 2011; 2: 598
  • 89 Bachmann VA, Mayrhofer JE, Ilouz R, Tschaikner PM, Raffeiner P, Röck R, Courcelles M, Apelt F, Lu T, Baillie GS, Thibault P, Aanstad P, Stelzl U, Taylor SS, Stefan E. Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc Natl Acad Sci USA 2016; 113: 7786-7791
  • 90 Zhang P, Knape MJ, Ahuja LG, Keshwani MM, King CC, Sastri M, Herberg FW, Taylor SS. Single Turnover Autophosphorylation Cycle of the PKA RIIbeta Holoenzyme. PLoS Biol 2015; 13: e1002192
  • 91 Burgers PP, Bruystens J, Burnley RJ, Nikolaev VO, Keshwani M, Wu J, Janssen BJ, Taylor SS, Heck AJ, Scholten A. Structure of smAKAP and its regulation by PKA-mediated phosphorylation. FEBS J 2016; 283: 2132-2148
  • 92 Knape MJ, Ahuja LG, Bertinetti D, Burghardt NC, Zimmermann B, Taylor SS, Herberg FW. Divalent Metal Ions Mg(2)(+) and Ca(2)(+) Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chem Biol 2015; 10: 2303-2315
  • 93 Filteau M, Diss G, Torres-Quiroz F, Dube AK, Schraffl A, Bachmann VA, Gagnon-Arsenault I, Chretien AE, Steunou AL, Dionne U, Cote J, Bisson N, Stefan E, Landry CR. Systematic identification of signal integration by protein kinase A. Proc Natl Acad Sci USA 2015; 112: 4501-4506
  • 94 Lignitto L, Carlucci A, Sepe M, Stefan E, Cuomo O, Nistico R, Scorziello A, Savoia C, Garbi C, Annunziato L, Feliciello A. Control of PKA stability and signalling by the RING ligase praja2. Nature cell biology 2011; 13: 412-422
  • 95 Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, Stefan E, Bachmann VA, Oliva MA, Tiziana Storlazzi C, L’Abbate A, Brunetti A, Gargiulo S, Gramanzini M, Insabato L, Garbi C, Gottesman ME, Feliciello A. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 2013; 4: 1822
  • 96 Beuschlein F, Fassnacht M, Assie G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S, Faucz FR, Schaak K, Schmittfull A, Schwarzmayr T, Barreau O, Vezzosi D, Rizk-Rabin M, Zabel U, Szarek E, Salpea P, Forlino A, Vetro A, Zuffardi O, Kisker C, Diener S, Meitinger T, Lohse MJ, Reincke M, Bertherat J, Strom TM, Allolio B. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med 2014; 370: 1019-1028
  • 97 Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10: 1502-1510
  • 98 Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD. Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci USA 2003; 100: 4445-4450
  • 99 Christian F, Szaszak M, Friedl S, Drewianka S, Lorenz D, Goncalves A, Furkert J, Vargas C, Schmieder P, Gotz F, Zuhlke K, Moutty M, Gottert H, Joshi M, Reif B, Haase H, Morano I, Grossmann S, Klukovits A, Verli J, Gaspar R, Noack C, Bergmann M, Kass R, Hampel K, Kashin D, Genieser HG, Herberg FW, Willoughby D, Cooper DM, Baillie GS, Houslay MD, von Kries JP, Zimmermann B, Rosenthal W, Klussmann E. Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 2011; 286: 9079-9096