Klin Monbl Augenheilkd 2016; 233(06): 695-700
DOI: 10.1055/s-0042-100734
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Prevention of Iatrogenic Keratectasia

Prävention einer iatrogenen Keratektasie
C. J. Rapuano
Cornea Service, Wills Eye Hospital, 840 Walnut Street, suite 920, 19107 Philadelphia, Pennsylvania, United States
› Author Affiliations
Further Information

Publication History

received 28 September 2015

accepted 02 December 2015

Publication Date:
17 June 2016 (online)

Abstract

Iatrogenic corneal ectasia is a rare but devastating complication after refractive surgery. While its incidence appears to be declining, it has not been eliminated. Its cause is probably related to a combination of an intrinsic predisposition to ectasia and an additional anatomical destabilising effect from the refractive surgery. Determining which eyes are intrinsically “weak” and exactly how much additional “weakening” an eye can withstand before developing progressive thinning and protrusion are both difficult tasks. The essentially universal availability of corneal topography and the increasing use of corneal tomography have significantly improved our ability to preoperatively diagnose early forms of corneal ectasias, especially keratoconus and pellucid marginal degeneration. Advanced software algorithms have also enhanced the sensitivity and specificity of these technologies. Newer technologies, such as measuring corneal biomechanics and corneal epithelial distribution, will hopefully continue to help us to differentiate normal from abnormal corneas preoperatively. In addition to abnormalities in anterior and posterior corneal curvature, a number of other risk factors for the development of post-refractive surgery ectasia have been proposed, including younger patient age, thinner central corneal thickness, thinner residual stromal bed thickness and high myopia. If the percentage of altered tissue is > 40 %, this is an extremely accurate predictor of corneal ectasia after refractive surgery. While there are a number of effective treatments for iatrogenic corneal ectasia, such as contact lenses, corneal crosslinking, intracorneal rings and corneal transplantation, prevention should be the goal. With newer and better corneal imaging technology to help screen out patients with abnormal corneas along with an improved understanding of exactly how much weakening a given cornea can take, we should be able to minimize this vision threatening complication.

Zusammenfassung

Die iatrogene Hornhautkeratektasie ist eine seltene, aber verheerende Komplikation, die nach einem refraktiv-chirurgischen Eingriff auftreten kann. Obwohl die Häufigkeit rückläufig ist, kann die iatrogen bedingte Hornhautkeratektasie nicht vollkommen ausgeschlossen werden. Die wahrscheinlichste Ursache ist eine Kombination aus einer patientenspezifischen Veranlagung und der destabilisierenden Auswirkung einer Augen-Laser-Behandlung. Die Schwierigkeit besteht darin, vor einer Operation festzustellen, welche Augen eine inhärente „Schwäche“ besitzen und wieviel zusätzliche „Schwächung“ das Auge verträgt, bevor es zu einer progressiven Ausdünnung und Vorwölbung der Hornhaut kommt. Die allgemeine Verfügbarkeit von Hornhauttopografie und die zunehmende Verbreitung dieser Untersuchungsmethode haben wesentlich dazu beigetragen, dass frühe Formen der Hornhautektasie, insbesondere Keratokonus und pelluzide marginale Degeneration, vor einem chirurgischen Eingriff entdeckt werden. Hochentwickelte Software-Algorithmen haben die Sensitivität und Spezifität dieser Technologien zusätzlich erhöht. Neue Technologien, z. B. die Messung der Biomechanik der Hornhaut und der Epithelschicht der Hornhaut, werden hoffentlich dazu beitragen, dass normale Augenhornhaut präoperativ besser von abnormaler Hornhaut unterscheiden werden kann. Neben Anomalien der vorderen und hinteren Hornhautkrümmung werden eine Reihe weiterer Risikofaktoren für die Entwicklung einer Hornhautektasie nach refraktiver Chirurgie aufgezählt, darunter jüngeres Patientenalter, dünnere zentrale Hornhautdicke, dünnere stromale Restdicke sowie starke Kurzsichtigkeit. Falls der Prozentsatz an verändertem Gewebe mehr als 40 % beträgt, stellt dies einen äußerst genauen Prädiktor für das Auftreten einer Hornhautektasie nach refraktiver Chirurgie dar. Obwohl es wirksame Behandlungen der iatrogen bedingten Hornhautektasie gibt, z. B. das Tragen von Kontaktlinsen, das Crosslinking der Hornhaut, die Implantation von intrakornealen Ringsegmenten und die Hornhauttransplantation, sollte das Ziel die Vermeidung dieser Komplikation sein. Neue und bessere Bildgebungsverfahren zur Darstellung der Hornhaut, welche Patienten mit Hornhautanomalien frühzeitig erfassen, sowie bessere Kenntnisse über das Ausmaß der Schwächung, die eine Hornhaut verträgt, könnten zur Minimierung dieser visusbedrohenden Komplikation beitragen.

 
  • References

  • 1 Wellish KL, Glasgow BJ, Beltran F et al. Corneal ectasia as a complication of repeated keratotomy surgery. J Refract Corneal Surg 1994; 10: 360-364
  • 2 Shaikh S, Shaikh NM, Manche E. Iatrogenic keratoconus as a complication of radial keratotomy. J Cataract Refract Surg 2002; 28: 553-555
  • 3 Lyle WA, Jin GJ. Hyperopic automated lamellar keratoplasty: complications and visual results. Arch Ophthalmol 1998; 116: 425-428
  • 4 Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg 1998; 24: 1007-1009
  • 5 Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg 1998; 14: 312-317
  • 6 Geggel HS, Talley AR. Delayed onset keratectasia following laser in situ keratomileusis. J Cataract Refract Surg 1999; 25: 582-586
  • 7 Amoils SP, Deist MB, Gous P et al. Iatrogenic keratectasia after laser in situ keratomileusis for less than − 4.0 to − 7.0 diopters of myopia. J Cataract Refract Surg 2000; 26: 967-977
  • 8 Haw WW, Manche EE. Iatrogenic keratectasia after a deep primary keratotomy during laser in situ keratomileusis. Am J Ophthalmol 2001; 132: 920-921
  • 9 Pallikaris IG, Kymionis GD, Astyrakakis NI. Corneal ectasia induced by laser in situ keratomileusis. J Cataract Refract Surg 2001; 27: 1796-1802
  • 10 Rao SN, Epstein RJ. Early onset ectasia following laser in situ keratomileusus: case report and literature review. J Refract Surg 2002; 18: 177-184
  • 11 Spadea L, Palmieri G, Mosca L et al. Iatrogenic keratectasia following laser in situ keratomileusis. J Refract Surg 2002; 18: 475-480
  • 12 Wang JC, Hufnagel TJ, Buxton DF. Bilateral keratectasia after unilateral laser in situ keratomileusis: a retrospective diagnosis of ectatic corneal disorder. J Cataract Refract Surg 2003; 29: 2015-2018
  • 13 Malecaze F, Coullet J, Calvas P et al. Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology 2006; 113: 742-746
  • 14 Klein SR, Epstein RJ, Randleman JB et al. Corneal ectasia after laser in situ keratomileusis in patients without apparent preoperative risk factors. Cornea 2006; 25: 388-403
  • 15 Spadea L, Cantera E, Cortes M et al. Corneal ectasia after myopic laser in situ keratomileusis: a long-term study. Clin Ophthalmol 2012; 6: 1801-1813
  • 16 Moshirfar M, Smedley JG, Muthappan V et al. Rate of ectasia and incidence of irregular topography in patients with unidentified preoperative risk factors undergoing femtosecond laser-assisted LASIK. Clin Ophthalmol 2014; 8: 35-42
  • 17 Randleman JB, Russell B, Ward MA et al. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology 2003; 110: 267-275
  • 18 Binder PS. Ectasia after laser in situ keratomileusis. J Cataract Refract Surg 2003; 29: 2419-2429
  • 19 Tabbara KF, Kotb AA. Risk factors for corneal ectasia after LASIK. Ophthalmology 2006; 113: 1618-1622
  • 20 Condon PI, OʼKeefe M, Binder PS. Long-term results of laser in situ keratomileusis for high myopia: risk for ectasia. J Cataract Refract Surg 2007; 33: 583-590
  • 21 Caster AI, Friess DW, Potvin RJ. Absence of keratectasia after LASIK in eyes with preoperative central corneal thickness of 450 to 500 microns. J Refract Surg 2007; 23: 782-788
  • 22 Randleman JB, Woodward M, Lynn MJ et al. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology 2008; 115: 37-50
  • 23 Binder PS, Trattler WB. Evaluation of a risk factor scoring system for corneal ectasia after LASIK in eyes with normal topography. J Refract Surg 2010; 26: 241-250
  • 24 American Academy of Ophthalmology Basic and Clinical Science Course Subcommittee. Basic and Clinical Science Course. Section 14: Refractive Surgery, 2004 – 2005. San Francisco, CA: American Academy of Ophthalmology; 2004: 49
  • 25 Santhiago MR, Smadja D, Gomes BF et al. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am J Ophthalmol 2014; 158: 87-95
  • 26 Santhiago MR, Smadja D, Wilson SE et al. Role of percent tissue altered on ectasia after LASIK in eyes with suspicious topography. J Refract Surg 2015; 31: 258-265
  • 27 Ambrósio jr. R, Dawson DG, Salomão M et al. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg 2010; 26: 906-911
  • 28 Reddy JC, Rapuano CJ, Cater JR et al. Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J Cataract Refract Surg 2014; 40: 582-592
  • 29 Shah S, Laiquzzaman M, Bhojwani R et al. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 2007; 48: 3026-3031
  • 30 Schweitzer C, Roberts CJ, Mahmoud AM et al. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci 2010; 51: 2403-2410
  • 31 Kara N, Altinkaynak H, Baz O et al. Biomechanical evaluation of cornea in topographically normal relatives of patients with keratoconus. Cornea 2013; 32: 262-266
  • 32 Ventura BV, Machado AP, Ambrósio jr. R et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg 2013; 29: 637-643
  • 33 Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg 2009; 25: 604-610
  • 34 Reinstein DZ, Gobbe M, Archer TJ et al. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg 2010; 26: 259-271
  • 35 Li Y, Tan O, Brass R et al. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 2012; 119: 2425-2433
  • 36 Temstet C, Sandali O, Bouheraoua N et al. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg 2015; 41: 812-820
  • 37 Rocha KM, Perez-Straziota CE, Stulting RD et al. SD-OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes. J Refract Surg 2013; 29: 173-179
  • 38 Maeda N, Nakagawa T, Higashiura R et al. Evaluation of corneal epithelial and stromal thickness in keratoconus using spectral-domain optical coherence tomography. Jpn J Ophthalmol 2014; 58: 389-395
  • 39 Rabinowitz YS, Li X, Canedo AL et al. Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J Refract Surg 2014; 30: 80-87