Semin Musculoskelet Radiol 2019; 23(03): e68-e81
DOI: 10.1055/s-0039-1687898
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Metal About the Hip and Artifact Reduction Techniques: From Basic Concepts to Advanced Imaging

Iman Khodarahmi
1   Department of Radiology, New York University School of Medicine, New York, New York
,
Amanda Isaac
2   Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, United Kingdom
3   Kings College London (KCL), London, United Kingdom
,
Elliot K. Fishman
4   Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
,
Danoob Dalili
2   Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, United Kingdom
3   Kings College London (KCL), London, United Kingdom
4   Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
,
Jan Fritz
4   Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2019 (online)

Abstract

Promising outcomes of hip replacement interventions in this era of aging populations have led to higher demands for hip arthroplasty procedures. These require effective methods and techniques for the detection of postoperative outcomes and complications. Based on the presence or absence of radiographic findings, magnetic resonance imaging (MRI) and computed tomography (CT) may be required to detect and further characterize different causes of failing implants. Yet metal-related artifacts degrade image quality and pose significant challenges for adequate image quality. To mitigate such artifacts in MRI, a set of techniques, collectively known as metal artifact reduction sequence (MARS) MRI, were developed that optimize the framework of the conventional pulse sequences and exploit novel multispectral and multispatial imaging methods such as Slice Encoding for Metal Artifact Correction (SEMAC) and Multi-Acquisition Variable-Resonance Image Combination (MAVRIC). Metal-induced artifacts on CT can be effectively reduced with virtual monochromatic reconstruction of dual-energy CT data sets, metal artifact reduction reconstruction algorithms, and postprocessing image visualization techniques.

 
  • References

  • 1 Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89 (04) 780-785
  • 2 Patel A, Pavlou G, Mújica-Mota RE, Toms AD. The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J 2015; 97-B (08) 1076-1081
  • 3 Khodarahmi I, Fritz J. Advanced MR imaging after total hip arthroplasty: The clinical impact. Semin Musculoskelet Radiol 2017; 21 (05) 616-629
  • 4 Hwang SK. Experience of complications of hip arthroplasty. Hip Pelvis 2014; 26 (04) 207-213
  • 5 Graf H, Lauer UA, Berger A, Schick F. RF artifacts caused by metallic implants or instruments which get more prominent at 3 T: an in vitro study. Magn Reson Imaging 2005; 23 (03) 493-499
  • 6 Graf H, Steidle G, Martirosian P, Lauer UA, Schick F. Metal artifacts caused by gradient switching. Magn Reson Med 2005; 54 (01) 231-234
  • 7 Graf H, Steidle G, Martirosian P, Lauer UA, Schick F. Effects on MRI due to altered rf polarization near conductive implants or instruments. Med Phys 2006; 33 (01) 124-127
  • 8 Khodarahmi I, Nittka M, Fritz J. Leaps in technology: advanced MR imaging after total hip arthroplasty. Semin Musculoskelet Radiol 2017; 21 (05) 604-615
  • 9 Dillenseger JP, Molière S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016; 45 (05) 677-688
  • 10 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 11 Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017; 46 (07) 897-908
  • 12 Lee MJ, Kim S, Lee SA. , et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007; 27 (03) 791-803
  • 13 Kumar NM, de Cesar Netto C, Schon LC, Fritz J. Metal artifact reduction magnetic resonance imaging around arthroplasty implants: the negative effect of long echo trains on the implant-related artifact. Invest Radiol 2017; 52 (05) 310-316
  • 14 Del Grande F, Santini F, Herzka DA. , et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-233
  • 15 Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012; 199 (06) W735-W742
  • 16 Fritz J, Lurie B, Potter HG. MR imaging of knee arthroplasty implants. Radiographics 2015; 35 (05) 1483-1501
  • 17 Molière S, Dillenseger JP, Ehlinger M, Kremer S, Bierry G. Comparative study of fat-suppression techniques for hip arthroplasty MR imaging. Skeletal Radiol 2017; 46 (09) 1209-1217
  • 18 Müller GM, Månsson S, Müller MF. , et al. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skeletal Radiol 2014; 43 (08) 1101-1112
  • 19 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15 (01) 7-11
  • 20 Butts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med 2005; 53 (02) 418-424
  • 21 Hilgenfeld T, Prager M, Schwindling FS. , et al. MSVAT-SPACE-STIR and SEMAC-STIR for reduction of metallic artifacts in 3T head and neck MRI. AJNR Am J Neuroradiol 2018; 39 (07) 1322-1329
  • 22 Ai T, Padua A, Goerner F. , et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012; 47 (05) 267-276
  • 23 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62 (01) 66-76
  • 24 Chen CA, Chen W, Goodman SB. , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (05) 1121-1127
  • 25 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
  • 26 Jungmann PM, Bensler S, Zingg P, Fritz B, Pfirrmann CW, Sutter R. Improved visualization of juxtaprosthetic tissue using metal artifact reduction magnetic resonance imaging: experimental and clinical optimization of compressed sensing SEMAC. Invest Radiol 2019; 54 (01) 23-31
  • 27 Fritz J, Lurie B, Miller TT. Imaging of hip arthroplasty. Semin Musculoskelet Radiol 2013; 17 (03) 316-327
  • 28 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 29 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (02) 381-390
  • 30 Koch KM, Brau AC, Chen W. , et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (01) 71-82
  • 31 Hargreaves BA, Taviani V, Litwiller DV, Yoon D. 2D multi-spectral imaging for fast MRI near metal. Magn Reson Med 2018; 79 (02) 968-973
  • 32 Hargreaves BA, Chen W, Lu W. , et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010; 31 (04) 987-996
  • 33 Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging 2013; 37 (01) 243-248
  • 34 de Cesar Netto C, Fonseca LF, Fritz B. , et al. Metal artifact reduction MRI of total ankle arthroplasty implants. Eur Radiol 2018; 28 (05) 2216-2227
  • 35 Fritz J, Fritz B, Thawait GK. , et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 2016; 45 (10) 1345-1356
  • 36 Fritz J, Ahlawat S, Demehri S. , et al. Compressed Sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
  • 37 Otazo R, Nittka M, Bruno M. , et al. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration. Magn Reson Med 2017; 78 (01) 79-87
  • 38 Gotman I. Characteristics of metals used in implants. J Endourol 1997; 11 (06) 383-389
  • 39 Boas F, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med 2012; 4: 229-240
  • 40 Lalonde A, Simard M, Remy C, Bär E, Bouchard H. The impact of dual- and multi-energy CT on proton pencil beam range uncertainties: a Monte Carlo study. Phys Med Biol 2018; 63 (19) 195012
  • 41 Park HS, Chung YE, Seo JK. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis. Philos Trans A Math Phys. Eng Sci 2015 ;373(2043):
  • 42 Joseph PM, Spital RD. The effects of scatter in x-ray computed tomography. Med Phys 1982; 9 (04) 464-472
  • 43 Park HS, Choi JK, Seo JK. Characterization of metal artifacts in X-ray computed tomography. Comm Pure Appl Math 2017; 70: 2191-2217
  • 44 Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra GJ. Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur J Radiol 2018; 107: 60-69
  • 45 Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018; 38 (02) 450-461
  • 46 Mazin SR, Star-Lack J, Bennett NR, Pelc NJ. Inverse-geometry volumetric CT system with multiple detector arrays for wide field-of-view imaging. Med Phys 2007; 34 (06) 2133-2142
  • 47 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004; 24 (06) 1679-1691
  • 48 Gjesteby L, Man BD, Jin Y, Paganetti H, Verburg J, Giantsoudi D. , et al. Metal artifact reduction in CT: where are we after four decades?. IEEE 2016; 4: 5826-5849
  • 49 Boudabbous S, Arditi D, Paulin E, Syrogiannopoulou A, Becker C, Montet X. Model-Based Iterative Reconstruction (MBIR) for the reduction of metal artifacts on CT. AJR Am J Roentgenol 2015; 205 (02) 380-385
  • 50 Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol 2013; 42 (02) 275-282
  • 51 Higashigaito K, Angst F, Runge VM, Alkadhi H, Donati OF. Metal artifact reduction in pelvic computed tomography with hip prostheses: comparison of virtual monoenergetic extrapolations from dual-energy computed tomography and an iterative metal artifact reduction algorithm in a phantom study. Invest Radiol 2015; 50 (12) 828-834
  • 52 Khodarahmi I, Fishman EK, Fritz J. Dedicated CT and MRI techniques for the evaluation of the postoperative knee. Semin Musculoskelet Radiol 2018; 22 (04) 444-456
  • 53 Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 2010; 37 (10) 5482-5493
  • 54 Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 2012; 39 (04) 1904-1916
  • 55 Mahnken AH, Raupach R, Wildberger JE. , et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Invest Radiol 2003; 38 (12) 769-775
  • 56 Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skeletal Radiol 2009; 38 (08) 797-802
  • 57 Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys 2006; 33 (08) 2852-2859
  • 58 Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013; 268 (01) 237-244
  • 59 Wellenberg RH, Boomsma MF, van Osch JA. , et al. Computed tomography imaging of a hip prosthesis using iterative model-based reconstruction and orthopaedic metal artefact reduction: a quantitative analysis. J Comput Assist Tomogr 2016; 40 (06) 971-978
  • 60 Bongers MN, Schabel C, Thomas C. , et al. Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 2015; 10 (11) e0143584
  • 61 Han SC, Chung YE, Lee YH, Park KK, Kim MJ, Kim KW. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility. AJR Am J Roentgenol 2014; 203 (04) 788-795
  • 62 Andersson KM, Norrman E, Geijer H. , et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol 2016; 89 (1063): 20150993
  • 63 Dabirrahmani D, Magnussen J, Appleyard RC. Dual-energy computed tomography-how accurate is gemstone spectrum imaging metal artefact reduction? Its application to orthopedic metal implants. J Comput Assist Tomogr 2015; 39 (06) 925-935
  • 64 Pessis E, Sverzut JM, Campagna R, Guerini H, Feydy A, Drapé JL. Reduction of metal artifact with dual-energy CT: virtual monospectral imaging with fast kilovoltage switching and metal artifact reduction software. Semin Musculoskelet Radiol 2015; 19 (05) 446-455
  • 65 Khodarahmi I, Haroun RR, Lee M. , et al. Metal artifact reduction computed tomography of arthroplasty implants: effects of combined modeled iterative reconstruction and dual-energy virtual monoenergetic extrapolation at higher photon energies. Invest Radiol 2018; 53 (12) 728-735
  • 66 Zhang X, Wang J, Xing L. Metal artifact reduction in X-ray computed tomography (CT) by constrained optimization. Med Phys 2011; 38 (02) 701-711
  • 67 Zhang X, Xing L. Sequentially reweighted TV minimization for CT metal artifact reduction. Med Phys 2013; 40 (07) 071907
  • 68 Zhang Y, Yan H, Jia X, Yang J, Jiang SB, Mou X. A hybrid metal artifact reduction algorithm for X-ray CT. Med Phys 2013; 40 (04) 041910
  • 69 Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM. Imaging of limb salvage surgery. AJR Am J Roentgenol 2012; 198 (03) 647-660
  • 70 Rowe SP, Fritz J, Fishman EK. CT evaluation of musculoskeletal trauma: initial experience with cinematic rendering. Emerg Radiol 2018; 25 (01) 93-101
  • 71 Seo N, Chung YE, An C, Choi JY, Park MS, Kim MJ. Feasibility of radiation dose reduction with iterative reconstruction in abdominopelvic CT for patients with inappropriate arm positioning. PLoS One 2018; 13 (12) e0209754
  • 72 Wellenberg RH, Boomsma MF, van Osch JA. , et al. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction. Skeletal Radiol 2017; 46 (05) 623-632
  • 73 Subhas N, Pursyko CP, Polster JM. , et al. Dose reduction with dedicated CT metal artifact reduction algorithm: CT phantom study. AJR Am J Roentgenol 2018; 210 (03) 593-600