Synlett 2018; 29(14): 1897-1901
DOI: 10.1055/s-0037-1609579
letter
© Georg Thieme Verlag Stuttgart · New York

Improved One-Pot, Four-Component Strategy to Access ­Functionalized Dihydropyridines by Using 4-(N,N-Dimethylamino)pyridine as a Catalyst

Rathinam Ramesh
a   Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India   Email: lalitha253@periyaruniversity.ac.in
,
Mani Arivazhagan
a   Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India   Email: lalitha253@periyaruniversity.ac.in
,
Jan Grzegorz Malecki
b   Department of Crystallography, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
,
Appaswami Lalitha*
a   Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India   Email: lalitha253@periyaruniversity.ac.in
› Author Affiliations
R.R. thanks the Department of Science and Technology, New Delhi, ­India (Grant No: DST/INSPIRE Fellowship/2012/690) for financial support.
Further Information

Publication History

Received: 18 April 2018

Accepted after revision: 15 June 2018

Publication Date:
20 July 2018 (online)


Abstract

A convenient strategy has been developed for the synthesis of structurally diverse novel 1,4-dihydropyridine frameworks bearing a 3-nitrophenyl moiety through a one-pot, four-component reaction with 4-(N,N-dimethylamino)pyridine as a catalyst at room temperature. This tandem process proceeds more effectively than previous catalytic processes.

Supporting Information

 
  • References and Notes

    • 1a Tang S. Si Y.-Y. Wang Z.-P. Mei K.-R. Chen X. Cheng J.-Y. Zheng J.-S. Liu L. Angew. Chem. Int. Ed. 2015; 54: 5713
    • 1b Yatabe T. Jin X. Yamaguchi K. Mizuno N. Angew. Chem. Int. Ed. 2015; 54: 13302
    • 1c Deng Y. Gong W. He J. Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 6692
    • 1d Yoshida M. Mizuguchi T. Namba K. Angew. Chem. Int. Ed. 2014; 53: 14550
    • 2a Singh RP. Verma RD. Meshri DT. Shreeve JM. Angew. Chem. Int. Ed. 2006; 45: 3584
    • 2b Winkler M. Houk KN. J. Am. Chem. Soc. 2007; 129: 1805
  • 3 Triggle DJ. Langs DD. Janis RA. Med. Res. Rev. 1989; 9: 123
  • 4 Mason RP. Mak IT. Trumbore MW. Mason PE. Am. J. Cardiol. 1999; 84: 16
  • 5 Aruoma O. Smith C. Cecchini R. Evans P. Halliwell B. Biochem. Pharmacol. 1991; 42: 735
  • 6 Kawase M. Shah A. Gaveriya H. Motohashi N. Sakagami H. Varga AJ. Bioorg. Med. Chem. 2002; 10: 1051
  • 7 Zamponi GW. Stotz SC. Staples RJ. Andro TM. Nelson JK. Hulubei V. Blumenfeld A. Natale NR. J. Med. Chem. 2003; 46: 87
    • 8a Kharkar PS. Desai B. Gaveria H. Varu B. Loriya R. Naliapara Y. Shah A. Kulkarni VM. J. Med. Chem. 2002; 45: 4858
    • 8b McCormack JG. Westergaard N. Kristiansen M. Brand CL. Lau J. Curr. Pharm. Des. 2001; 7: 1457
    • 9a Guarna A. Belle C. Machetti F. Occhiato EG. Payne AH. J. Med. Chem. 1997; 40: 1112
    • 9b Li Q. Mitscher LA. Shen LL. Med. Res. Rev. 2000; 20: 231
    • 9c Stončius S. Orentas E. Butkus E. Öhrström L. Wendt OF. Wärnmark KW. J. Am. Chem. Soc. 2006; 128: 8272
    • 9d Mohler ML. Bohl CE. Jones A. Coss CC. Narayanan R. He Y. Hwang DJ. Dalton JT. Miller DD. J. Med. Chem. 2009; 52: 3597
    • 10a Simal C. Lebl T. Slawin AM. Z. Smith AD. Angew. Chem. 2012; 124: 3713
    • 10b Jessen HJ. Schumacher A. Shaw T. Pfaltz A. Gademann K. Angew. Chem. Int. Ed. 2011; 50: 4222
    • 10c Jiang J. Qing J. Gong L.-Z. Chem. Eur. J. 2009; 15: 7031
    • 11a Klusa V. Drugs Future 1995; 20: 135
    • 11b Boer R. Gekeler V. Drugs Future 1995; 20: 499
  • 12 Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
  • 13 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
  • 14 Langer P. Chem. Eur. J. 2001; 7: 3858
  • 15 Langer P. Synthesis 2002; 2002: 441
  • 16 Khan AT. Lal M. Ali S. Khan M. Tetrahedron Lett. 2011; 52: 5327
  • 17 Xu S. Held I. Kempf B. Mayr H. Steglich W. Zipse H. Chem. Eur. J. 2005; 11: 4751
  • 18 Octavio R. de Souza MA. Vasconcellos ML. A. A. Synth. Commun. 2003; 33: 1383
  • 19 Misra M. Pandey S. Pandey VP. Pandey J. Tripathi R. Tripathi RP. Bioorg. Med. Chem. 2009; 17: 625
  • 20 Ramesh R. Lalitha A. RSC Adv. 2015; 5: 51188
  • 21 Ramesh R. Lalitha A. Res. Chem. Intermed. 2015; 41: 8009
  • 22 Ramesh R. Maheswari S. Murugesan S. Sandhiya R. Lalitha A. Res. Chem. Intermed. 2015; 41: 8233
  • 23 Ramesh R. Vadivel P. Maheswari S. Lalitha A. Res. Chem. Intermed. 2016; 42: 7625
  • 24 Ramesh R. Lalitha A. ChemistrySelect 2016; 1: 2085
  • 25 Ramesh R. Nagasundaram N. Meignanasundar D. Lalitha A. Res. Chem. Intermed. 2017; 43: 1767
  • 26 Ramesh R. Sankar G. Malecki JG. Lalitha A. J. Iran. Chem. Soc. 2018; 15: 1
  • 27 Ramesh R. Kalisamy P. Malecki JG. Lalitha A. Synlett 2018; 29: 203
  • 28 Ramesh R. Maheswari S. Arivazhagan M. Malecki JG. Lalitha A. Tetrahedron Lett. 2017; 58: 3905
  • 29 Ramesh R. Meignanasundar D. Lalitha A. ChemistrySelect 2017; 2: 10210
  • 30 Ramesh R., Jayamathi J., Karthika C., Malecki J. G., Lalitha A.; Polycyclic Aromat. Compd.; DOI:10.1080/10406638.2018. 1454968.
  • 31 Dimethyl 6-Amino-5-cyano-4-(3-nitrophenyl)-1-phenyl-1,4-dihydropyridine-2,3-dicarboxylate (5l); Typical Procedure 3-Nitrobenzaldehyde (2.5 mmol), malononitrile (2.5 mmol), and DMAP (10 mol%) were dissolved in EtOH (5 mL), and the mixture was stirred at r.t. for 2 min. A solution of DMAD (2.5 mmol) and aniline (2.5 mmol) in EtOH (5 mL) was added slowly, and the resulting mixture was stirred at r.t. for 20 min. When the reaction was complete (TLC; EtOAc–hexane), the solid that formed was collected by filtration, dried, and crystallized from EtOH.
  • 32 Dimethyl 6-Amino-5-cyano-1-(4-methoxyphenyl)-4-(3-nitrophenyl)-1,4-dihydropyridine-2,3-dicarboxylate (5a) Yellow crystals; yield: 1118 mg (96%); mp 194–196 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 3.40 (s, 3 H, COOCH3), 3.55 (s, 3 H, COOCH3), 3.83 (s, 3 H, OCH3), 4.71 (s, 1 H, CH), 5.81 (s, 2 H, NH2), 7.05 (d, J = 8.0 Hz, 2 H, ArH), 7.25 (d, J = 8.0 Hz, 2 H, ArH), 7.79 (d, J = 8.0 Hz, 2 H, ArH), 8.16 (d, J = 8.0 Hz, 2 H, ArH). 13C NMR (100 MHz, DMSO-d6 ): δ = 38.2, 52.0, 52.4, 55.4, 58.4, 103.3, 114.7, 120.6, 121.0, 122.1, 127.2, 130.5, 131.3, 133.5, 142.8, 147.6, 148.0, 151.4, 160.0, 162.7, 164.7.
  • 33 CCDC 1561544 contains the supplementary crystallographic data for compound 5f. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 34 Ghasemzadeh MA. Basir MH. A. Acta Chim. Slov. 2016; 63: 627
  • 35 Kiruthika SE. Perumal PT. RSC Adv. 2014; 4: 3758
  • 36 Sun J. Xia E.-Y. Wu Q. Yan C.-G. Org. Lett. 2010; 12: 3678
  • 37 Hadjebia M. Hashtroudib MS. Bijanzadeh HR. Balalaie S. Helv. Chim. Acta 2011; 94: 382
  • 38 Pal S. Choudhury LH. Parvin T. Synth. Commun. 2013; 43: 986
  • 39 Pal S. Singh V. Das P. Choudhury LH. Bioorg. Chem. 2013; 48: 8
  • 40 Chen H.-S. Guo R.-Y. Monatsh. Chem. 2015; 146: 1355
  • 41 Ramesh R. Madhesh R. Malecki JG. Lalitha A. ChemistrySelect 2016; 1: 5196
  • 42 Pal S. Khan N. Choudhury LH. J. Heterocycl. Chem. 2014; 51: E156
  • 43 Tabassum S. Govindaraju S. Khan R.-u.-R. Pasha MA. RSC Adv. 2016; 6: 29802