Pharmacopsychiatry 2011; 44: S76-S83
DOI: 10.1055/s-0031-1273697
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Bursts and the Efficacy of Selective Serotonin Reuptake Inhibitors

J. Best1 , H. F. Nijhout2 , M. Reed3
  • 1Department of Mathematics, The Ohio State University, Columbus, OH, USA
  • 2Department of Biology, Duke University, Durham, NC, USA
  • 3Department of Mathematics, Duke University, Durham, NC, USA
Further Information

Publication History

Publication Date:
05 May 2011 (online)

Abstract

We present a new hypothesis for the efficacy of selective serotonin reuptake inhibitors (SSRIs). We propose that SSRIs bring the response to the phasic firing of raphe nucleus cells back to normal, even though the average extracellular 5HT concentration remains low. We discuss burst firing in the raphe nuclei and use mathematical models to argue that tonic firing and phasic firing may be decoupled and may come from different mechanisms. We use a mathematical model for serotonin synthesis, release, and reuptake in terminals to illustrate the responses in terminal regions to bursts in a normal individual and in an individual with low vesicular serotonin. We then show that acute doses of SSRIs do not bring the response to bursts back to normal, but that chronic doses do return the response to normal. These model results need to be confirmed by new electrophysiological and pharmacological experiments.

References

  • 1 Adell A, Celada P, Abella MT. et al . Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei.  Brain Res Rev. 2002;  39 154-180
  • 2 Anderson GM, Barr CS, Lindell S. et al . Time course of the effects of the serotonin-selective reuptake inhibitor sertraline on central and peripheral serotonin neurochemistry in the rhesus monkey.  Phycopharma. 2005;  178 339-346
  • 3 Baghai TC, Möller HJ, Rupprecht R. Recent progress in pharmacological and nonpharmacological treatment options of major depression.  Curr Pharm Design. 2006;  12 503-515
  • 4 Bel N, Artigas F. Fluoxetine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study.  Eur J Pharmacol. 1992;  229 101-103
  • 5 Bengel D, Murphy DL, Andrews AM. et al . Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice.  Amer Soc Pharma Exper Therap. 1998;  53 649-655
  • 6 Benkelfat C, Ellenbogen MA, Dean P. et al . Mood-lowering effect of tryptophan depletion.  Arch Gen Psych. 1994;  51 687-697
  • 7 Benmansour S, Owens WA, Cecchi M. et al . Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of the transporter.  J Neurosci. 2002;  22 (no. 15) 6766-6772
  • 8 Best JA, Nijhout HF, Reed MC. Serotonin synthesis, release and reuptake in terminals: a mathematical model.  Theor Biol Med Model. 2010;  7 34-▪
  • 9 Birzniece V, Johansson I-M, Wang M-D. et al . Serotonin 5-HT1a receptor mRNA expression in dorsal hippocampus and raphe nuclei after gonadal hormone manipulation in female rats.  Neuroendocrinology. 2001;  74 (no. 2) 135-142
  • 10 Blier P, de Montigny C, Chaput Y. Modifications of the serotonin system by antidepressant treatment: implications for the therapeutic response in major depression.  J Clin Psychoharmacol. 1987;  7 24S-35S
  • 11 Bunin MA, Prioleau C, Mailman RB. et al . Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra of the rat brain.  J Neurochem. 1998;  70 1077-1087
  • 12 Casanovas JM, Artigas F. Differential effects of ipsapirone on 5-hydroxytryptamine release in the dorsal and median raphe neuronal pathways.  J Neurochem. 1996;  67 1945-1952
  • 13 Casanovas JM, Lesourd M, Artigas F. The effect of the selective 5-HT1a agonists alnespirone (s-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain.  Brit J Pharmacol. 1997;  122 733-741
  • 14 Celada P, Puig MV, Casanovas JM. et al . Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABAa, and glutamate receptors.  J Neurosci. 2001;  15 9917-9929
  • 15 Chaput Y, Blier P, de Montigny C. In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals.  J Neurosci. 1986;  6 (no. 10) 2796-2801
  • 16 Conley RK, Cumberbatch MJ, Mason GS. et al . Substance P (neurokinin 1) receptor antagonists enhance dorsal raphe neuronal activity.  J Neurosci. 2002;  22 7730-7736
  • 17 Daws LC, Montenez S, Owens WA. et al . Transport mechanisms governing serotonin clearance in vivo revealed by high speed chronoamperometry.  J Neurosci Meth. 2005;  143 49-62
  • 18 Feldman RS, Meyer JS, Quenzer LF. Principles of Neuropharmacology.. Sinauer Associates, Inc, Sunderland, MA; 1997
  • 19 Fite KV, Janusonis S, Foote W. et al . Retinal afferents to the dorsal raphe nucleaus in rats and mongolian gerbils.  J Comp Neurol. 1999;  414 469-484
  • 20 Fornal CA, Litto WJ, Metzler CW. et al . Single-unit responses of serotonergic dorsal raphe neurons to 5-HT1a agonist and antagonist drug administration in behaving cats.  J Pharmacol Exper Therap. 1994;  270 1345-1358
  • 21 Gartside SE, Umbers V, Hajos M. et al . Interaction between a selective 5-HT1a receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT.  Br J Pharmacol. 1995;  115 1064-1070
  • 22 Georgetti M, Tecott LH. Contributions of 5-HT2c receptors to multiple actions of central serotonin systems.  Eur J Pharmacol. 2004;  488 1-9
  • 23 Gould GG, Pardon MC, Morilak DA. et al . Regulatory effects of reboxetine treatment alone, or following paroxetine treatment, on brain noradrenergic and serotonergic systems.  Neuropsychopharmacology. 2003;  28 1633-1644
  • 24 Hajos M, Allers KA, Jennings K. et al . Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods.  Eur J Neurosci. 2007;  25 119-126
  • 25 Hajos M, Gartside SE, Villa AEP. et al . Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat.  Neuroscience. 1995;  69 189-197
  • 26 Hajos M, Sharp T. Burst-firing activity of presumed 5-ht neurones of the rat dorsal raphe nucleus: electrophysiological analysis by antidromic stimulation.  Brain Res. 1996;  740 162-168
  • 27 Heisler LK, Pronchuk N, Nonogaki K. et al . Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2c receptor stimulation.  J Neurosci. 2007;  27 (no. 26) 6956-6964
  • 28 Hervas I, Artigas F. Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. Role of 5HT autoreceptors.  Eur J Pharmacol. 1998;  358 9-18
  • 29 Hervas I, Velaro MT, Romero L. et al . Desensitization of 5-HT1a autoreceptors by a low chronic fluoxetine dose. Effect of the concurrent administration of WAY-100635.  Neuropsychopharmacology. 2001;  24 11-20
  • 30 Heyn J, Steinfels GF, Jacobs BJ. Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats.  Brain Res. 1982;  251 259-276
  • 31 Homberg JR, Olivier JDA, Smits BMG. et al . Characterization of the serotonin transporter knock out rat: a selective change in the functioning of the serotonergic system.  Neurosci. 2007;  146 1662-1676
  • 32 Invernizzi R, Bramante M, Samanin R. Citalopram's ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug's effect in the frontal cortex.  Brain Res. 1992;  260 322-324
  • 33 Izhikevich EM. Dynamical systems in neuroscience: The geometry of excitability and bursting.. MIT Press, Cambridge, MA; 2007
  • 34 Jacobs BL, Fornal CA. 5-HT and motor control: a hypothesis.  TINS. 1993;  16 346-352
  • 35 Knobelman DA, Hen R, Lucki I. Genetic regulation of extracellular serotonin by 5-hydroxtryptamine-1a and 5-hydroxytryptamine-1b autoreceptors in different brain regions of the mouse.  J Pharmacol Exper Therap. 2001;  298 1083-1091
  • 36 Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system.  Neuroscience. 2010;  166 (no. 4) 1023-1035
  • 37 Kreiss DS, Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-HT measured in vivo.  J Pharmacol Exper Therap. 1995;  274 866-876
  • 38 Lau T, Horschitz S, Berger S. et al . Antidepressant-induced internalization of the serotonin transporter in serotonergic neurons.  FASEB J. 2008;  22 1702-1714
  • 39 Levine ES, Jacobs B. Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: Microiontophoretic studies in the awake cat.  J Neurosci. 1992;  12 (no. ) 4037-4044
  • 40 Lin K-J, Yen T-C, Wey S-P. et al . Characterization of the binding sites 123I-ADAM and the relationship to the serotonin transporter in rat and mouse brains using quantitative autoradiography.  J Nuc Med. 2004;  45 673-681
  • 41 Malagie I, Trillat AC, Bourin M. et al . 5-HT1b autoreceptors limit the effects of selective serotonin re-uptake inhibitors in mouse hippocampus and frontal cortex.  J. Neurochem. 2001;  76 865-871
  • 42 Malagie I, Trillat AC, Jacquot C. et al . Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study.  Eur J Pharmacol. 1995;  286 213-217
  • 43 Maley BE, Engle MG, Humphreys S. et al . Monoamine synaptic structure and localization in the central nervous system.  J Electron Micros Tech. 1990;  15 20-33
  • 44 Marek GJ, Aghajanian GK. The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis.  Biolog Psychiatry. 1998;  44 (no. 11) 1118-1127
  • 45 Mascio MD, Giovanni GD, Matteo VD. et al . Decreased chaos of midbrain dopaminergic neurons after serotonin denervation.  Neuroscience. 1999;  92 (no. 1) 237-243
  • 46 Mizra NR, Nielson EO, Troelsen KB. Serotonin transporter density and anxiolytic-like effects of antidepressants in mice.  Prog Neuropsycho Biol Psych. 2007;  31 858-866
  • 47 Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber.  Biophys J. 1981;  35 193-213
  • 48 Parnavelas JG, Papadopoulos GC. The monoaminergic innervation of the cerebral cortex is not diffuse and non-specific.  TINS. 1989;  12 315-319
  • 49 Peyron C, Petit J-M, Rampon C. et al . Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods.  Neurosci. 1997;  82 443-468
  • 50 Ranade SP, Mainen ZF. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events.  J Neurophysiol. 2009;  102 3026-3037
  • 51 Rinzel J, Ermentrout B. Methods in Neuronal Modeling: from Ions to Networks, ch. 7.. MIT press; 1998
  • 52 Ruhé HG, Huyser J, Swinkeis JA. et al . Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review.  J Clin Psychiatry. 2006;  67 1836-1855
  • 53 Rutter JJ, Gundlah C, Auerbach SB. Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine.  Neurosci Lett. 1994;  171 183-186
  • 54 Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence.  Amer J Psych. 1965;  122 509-522
  • 55 Schweimer JV, Ungless MA. Phasic responses in dorsal raphe serotonin neurons to noxious stimuli.  Neuroscience. 2010;  171 1209-1215
  • 56 Smith T, Kuczenski R, George-Friedman K. et al . In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration.  Synapse. 2000;  38 460-470
  • 57 Stancampiano R, Melis F, Sarais L. et al . Acute administration of a tryptophan-free amino acid mixture decreases 5-HT release in rat hippocampus in vivo.  Am J Physiol. 1997;  272 R991-R994
  • 58 Stein P, Savli M, Wadsakj W. et al . The serotonin-1a receptor distribution in healthy men and women measured by pet and [carbonyl- 11c]WAY-100635.  Eur J Nucl Med. 2008;  35 (no. 12) 2159-2168
  • 59 Strogatz SH. Nonlinear Dynamics and Chaos.. Addison-Wesley, Reading, MA; 1994
  • 60 Tanda G, Frau R, Di Chiara G. Chronic desipramine and fluoxetine differentially affect extracellular dopamine in the rat pre-frontal cortex.  Psychopharmacology. 1996;  127 83-87
  • 61 Vesly SC, Fornal CA, Metzler CW. et al . Single-unit responses of serotonergic dorsal raphe neurons to specific motor challenges in freely moving cats.  Neuroscience. 1997;  79 161-169
  • 62 Weissmann-nanopoulos D, Mach E, Magre J. et al . Evidence for the localization of 5HT1a binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain.  Neurochem Int. 1985;  7 1061-1072
  • 63 White KJ, Walline CC, Barker EL. Serotonin transporters: implications for antidepressant drug development.  AAPS J. 2005;  7 E421-E433
  • 64 Williams S, Bryan-Lluka LJ, Pow DV. Quantitative analysis of immunolabeling for serotonin and for glutamate transporters after administration of imipramine and citalopram.  Brain Res. 2005;  1042 224-232
  • 65 Young SN, Smith SE, Pihl R. et al . Tryptophan depletion causes rapid lowering of mood in normal males.  Psychopharmacology. 1985;  87 173-177
  • 66 Zusso M, Debetto P, Guidolin D. et al . Fluoxetine-induced proliferation and differentiation of neural progenitor cells isolated from rat postnatal cerebellum.  Biochemical Pharmacology. 2008;  76 391-403

Correspondence

Prof. J. Best

Department of Mathematics

The Ohio State University

Columbus, OH 43210

USA

Email: jbest@math.ohio-state.edu

    >