Anästhesiol Intensivmed Notfallmed Schmerzther 2010; 45(9): 574-579
DOI: 10.1055/s-0030-1265750
Fachwissen
Intensivmedizin - Topthema: Sepsis
© Georg Thieme Verlag Stuttgart · New York

Sepsis – Die Bedeutung der neuroendokrinen Achse in der Pathophysiologie der Sepsis

The neuroendocrine axis and the pathophysiology of sepsisKatja Weismüller, Michael Bauer, Stefan Hofer, Markus A. Weigand
Further Information

Publication History

Publication Date:
13 September 2010 (online)

Zusammenfassung

Immunsystem und ZNS können sich gegenseitig beeinflussen. Proinflammatorische Zytokine induzieren die Expression von Corticotropin-Releasing-Hormon (CRH) oder Arginin-Vasopressin (AVP) im Hypothalamus und adrenocorticotropem Hormon (ACTH) in der Hypophyse. Die hierdurch verursachte gesteigerte Kortisolfreisetzung entfaltet seine antiinflammatorische Wirkung durch Suppression der NF-κB-Aktivierung und durch Aktivierung antiinflammatorischer Zytokine.

Der cholinerg antiinflammatorische Pathway als efferenter Teil des inflammatorischen Reflexes ist ein weiterer Mechanismus neuronaler Inflammationskontrolle. Er besteht aus dem efferenten Anteil des N. vagus, dem Neurotransmitter Azetylcholin und der α7-Subunit des nikotinergen Azetylcholin-Rezeptors. Im Plexus coeliacus erfolgt wahrscheinlich die Weitergabe der Information an postsynaptische sympathische Fasern, die zur Milz ziehen und dort auf Zellen des Immunsystems einwirken. Cholinesterase-Inhibitoren führen in der experimentellen Sepsis zu antiinflammatorischen Effekten, wenn sie frühzeitig verabreicht werden.

Abstract

The immune system and the central nervous system are able to affect each other. Proinflammatory cytokines induce the expression of CRH or AVP in the hypothalamus and ACTH in the pituitary gland. Thus, enhanced adrenal release of cortisol suppresses the activation of NF-κB and activates antiinflammatory cytokines.

The cholinergic antiinflammatory pathway, the efferent arm of the inflammatory reflex, is another mechanism of the CNS to control inflammation. It consists of the efferent vagus nerve, the neurotransmitter actylcholine and the α7 subunit of the nicotinic acteylcholine receptor. Probably, the transmission of information takes place to postsynaptic sympathetic fibres in the celiac plexus which terminate in the spleen and act on splenic immune cells. Cholinesterase inhibitors have antiinflammatory effects in experimental sepsis when administered early.

Kernaussagen

  • Immunsystem und ZNS können miteinander kommunizieren, sich gegenseitig beeinflussen und spezifische Reaktionen hervorrufen.

  • Das sympathische Nervensystem kann durch proinflammatorische Zytokine aktiviert werden und efferent durch freigesetzte Katecholamine sowohl pro- als auch antiinflammatorisch wirken, je nach Rezeptorausstattung der Zielzelle.

  • Proinflammatorische Zytokine induzieren die Expression von

    • Corticotropin-Releasing-Hormon (CRH) oder Arginin-Vasopressin (AVP) im Hypothalamus und

    • adrenocorticotropem Hormon (ACTH) in der Hypophyse.

  • Die durch ACTH verursachte gesteigerte Kortisol-Freisetzung entfaltet seine antiinflammatorische Wirkung durch Suppression der NF-κB-Aktivierung und durch Aktivierung der Synthese von IL-4 und IL-10.

  • Der cholinerg antiinflammatorische Pathway als efferenter Teil des inflammatorischen Reflexes ist ein Mechanismus der neuronalen Inflammationskontrolle.

  • Der cholinerg antiinflammatorische Pathway besteht aus dem efferenten Anteil des N. vagus, dem Neurotransmitter Azetylcholin und der α7-Subunit des nikotinergen Azetylcholin-Rezeptors.

  • Im Plexus coeliacus erfolgt wahrscheinlich die Weitergabe der Information an postsynaptische sympathische Fasern, die zur Milz ziehen.

  • Cholinesterase-Inhibitoren führen in der experimentellen Sepsis zu antiinflammatorischen Effekten, wenn sie frühzeitig verabreicht werden.

Weiteres Material zum Artikel

Literatur

  • 1 Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation.  J Intern Med. 2009;  265 663-679
  • 2 Sternberg E. Neural regulator of innate immunity: A coordinated nonspecific host response to pathogens.  Nat Rev Immunol. 2006;  6 318-328
  • 3 Dantzer R, O'Connor JC, Freund GC, Johnson RW, Kelley KW. From inflammation to sickness and depression: When the immune subjugates the brain.  Nat Rev Neurosci. 2008;  9 46-56
  • 4 Woiciechowsky C, Schoning B, Lanksch WR, Volk H-D, Docke WD. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression.  J Mol Med. 1999;  77 769-780
  • 5 Ebersoldt M, Sharshar T, Annane D. Sepsis associated delirium.  Intensive Care Med. 2007;  33 941-950
  • 6 Kumar V, Sharma A. Is neuroimmunomodulation a future therapeutic approach for sepsis?.  Int Immunopharmacol. 2010;  10 9-17
  • 7 Madden K, Sanders V, Felten D. Catecholamine influences and sympathetic neural modulation of immune responsiveness.  Annu Rev Pharmacol Toxicol. 1995;  35 417-448
  • 8 Weihe E, Nohr D, Michel S, Müller S, Zentel HJ, Fink T, Krekel J. Molecular anatomy of the neuro-immune connection.  Int J Neurosci. 1991;  59 1-23
  • 9 John C, Buckingham J. Cytokines: Regulation of hypothalamo-pituitary-adrenocortical axis.  Curr Opin Pharmacol. 2003;  3 378-384
  • 10 Woiciechowsky C, Ruprecht S, Docke W-D, Volk H-D. Role of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis in brain-mediated compensatory anti-inflammatory response.  Biomed Rev. 2000;  11 29-38
  • 11 Dunn A, Wang J, Ando T. Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress.  Adv Exp Med Biol. 1999;  461 117-127
  • 12 Zhang J, Swiergiel AH, Palamarchouk VS, Dunn A. Intracerebroventricular infusion of CRF increases extracellular concentrations of norepinephrine in the hippocampus and cortex as determined by in vivo voltammetry.  Brain Res Bull. 1998;  47 277-284
  • 13 Berkenbosch F, de Goeij D, del Rey AE, Besedovsky HO. Neuroendocrine sympathetic and metabolic responses induced by interleukin-1.  Neuroendocrinology. 1989;  50 570-576
  • 14 Shimizu N, Hori T, Nakane H. An interleukin-1beta-induced noradrenaline release in the spleen is mediated by brain corticotropin-releasing factor.  Brain Behav Immun. 1994;  8 14-23
  • 15 Elenkov I, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between to super systems: The brain and the immune system.  Pharmacol Rev. 2000;  52 595-638
  • 16 Miksa M, Das P, Zhou M, Wu R, Dong W, Ji Y, Goyert SM, Ravikumar TS, Wang P. Pivotal role of the a2A-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis.  PLoS ONE. 2009;  4
  • 17 Spengler R, Allen RM, Demick DG, Strieter RM, Kunkel SL. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor.  J Immunol. 1990;  145 1430-1434
  • 18 Hasko G, Nemeth ZH, Szabo C, Zsilia G, salzman AL, Vizi ES. Isoproterenol inhibits IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages.  Brain Res Bull. 1998;  45 183-187
  • 19 Siegmund B, Eigler A, Hartmann G, Hacker U, Endres S. Adrenaline enhances LPS-induced IL-10 synthesis: Evidence for protein kinase A-mediated pathway.  Int J Immunopharmacol. 1998;  20 57-69
  • 20 Bornstein S, Chrousos G. Adrenocorticotrophin (ACTH)- and non-ACTH-mediated regulation of adrenal cortex: neural and immune inputs.  J Clin Endocrinol Metab. 1998;  84 1729-1736
  • 21 Matejec R, Löcke G, Mühling J, Harbach HW, Langefeld TW, Bödecker R-H, Hempelmann G. Release of melanotroph- and corticotroph-type proopiomelanocortin derivates in blood after administration of corticotropin-releasing hormone in patients with septic shock without adrenocortical insufficiency.  Shock. 2008;  31 553-560
  • 22 Munford R, Levine J. The crucial role of the systemic response in the innate (non-adaptive) host defense.  J Endotoxin Res. 2001;  7 327-332
  • 23 Besedovsky H, Del RE, Sorkin E, Dinarello C. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones.  Science. 1986;  233 652-654
  • 24 Tracey KJ. The inflammatory reflex.  Nature. 2002;  420 853-859
  • 25 Borovikova L, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.  Nature. 2000;  405 458-462
  • 26 Huston J et al.. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis.  Crit Care Med. 2007;  35 2762-2768
  • 27 Wang H et al.. Nicotinic actylcholine receptor α7 subunit is an essential regulator of inflammation.  Nature. 2003;  421 384-388
  • 28 Huston J et al.. Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels.  J Immunol. 2008;  181 3535-3539
  • 29 Hofer S et al.. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis.  Crit Care Med. 2008;  36 404-408
  • 30 Rittirsch D, Flierl M, Ward P. Harmful molecular mechanisms in sepsis.  Nature. 2008;  8 776-787
  • 31 Blalock J. The immune system as a sensory organ.  J Immunol. 1984;  132 1067-1070
  • 32 Blalock J. The immune system as the sixth sense.  J Intern Med. 2005;  257 126-138
  • 33 Goehler L, Gaykema RP, Hammack SE, Maier SF, Watkins LR. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve.  Brain Res. 1998;  804 306-310
  • 34 Goehler L, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication.  Brain Res Bull. 1997;  43 357-364
  • 35 Maier SF, Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication.  Ann N Y Acad Sci. 1998;  840 289-300
  • 36 Huston J et al.. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis.  J Exp Med. 2006;  203 1623-1628
  • 37 Rosas-Ballina M et al.. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia.  Proc Natl Acad Sci USA. 2008;  105 11008-11013
  • 38 Bellinger D, Felten SY, Lorton D, Felten DL. Origin of noradrenergic innervation of the spleen in rats.  Brain Behav Immun. 1989;  3 291-311
  • 39 Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing.  J Comp Neurol. 2001;  439 1-18
  • 40 Nance D, Burns J. Innervation of the spleen in the rat: Evidence for absence of afferent innervation.  Brain Behav Immun. 1989;  3 281-290
  • 41 Klein R, Wilson SP, Dzielak DJ, Yang WH, Viveros OH. Opiod peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve.  Neuroscience. 1982;  7 2255-2261
  • 42 Felten D, Ackermann KD, Wiegand SJ, Felten SY. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibres associate with lymphocytes and macrophages in specific compartments of the splenic white pulp.  J Neurosci Res. 1987;  18 28-36
  • 43 Deng J, Muthu K, Gamelli R, Shankar R, Jones SB. Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis.  Am J Physiol Cell Physiol. 2004;  287 730-736
  • 44 Bulloch K, Damavandy T, Badamchian M. Characterization of choline O-actyltransferase (ChAT) in the BALB/C mouse spleen.  Int J Neurosci. 1994;  76 141-149
  • 45 Lips K et al.. Coexpression and spatial association of nicotinic acytlcholine receptor subunit alpha7 and alpha 10 in rat sympathetic neurons.  J Mol Neurosci. 2006;  30 15-16
  • 46 Wang H et al.. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.  Nat Med. 2004;  10 1216-1221
  • 47 Peter C, Schmidt K, Hofer S, Stephan M, Martin E, Weigand MA, Walther A. Effects of physostigmine on microcirculatory alterations during experimental endotoxemia.  Shock. 2010;  33 405-411
  • 48 Ghia J, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: A tonic inhibitory influence associated with inflammatory bowel disease in a murine model.  Gastroenterology. 2006;  131 1122-1130
  • 49 van Westerloo DJ et al.. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice.  Gastroenterology. 2006;  130 1822-1830
  • 50 Akinci SB, Ulu N, Yondem OZ, Firat P, Guc MO, Kanbak M, Aypar U. Effect of neostigmine on organ injury in murine endotoxemia: Missing facts about the cholinergic antiinflammatory pathway.  World J Surg. 2005;  29 1483-1489

Dr. med. Katja Weismüller
Prof. Dr. med. Michael Bauer
Dr. med. Stefan Hofer
Univ.-Prof. Dr. med. Markus Alexander Weigand

Email: Katja.Weismueller@chiru.med.uni-giessen.de

Email: michael. bauer@med.uni-jena.de

Email: Stefan.Hofer@med.uni-heidelberg.de

Email: Markus.Weigand@chiru.med.uni-giessen.de

>