Planta Med 2010; 76(11): 1080-1086
DOI: 10.1055/s-0030-1250162
Cancer Therapy
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

High-Throughput Screening of Natural Products for Cancer Therapy

Alan L. Harvey1 , Ian A. Cree2
  • 1Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U. K.
  • 2Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth, U. K.
Further Information

Publication History

received January 30, 2010 revised June 29, 2010

accepted July 1, 2010

Publication Date:
15 July 2010 (online)

Abstract

Natural products have been the biggest single source of anticancer drugs and there are continued efforts to explore the chemical diversity provided by nature in order to find new lead compounds. Bioassay test methods have developed into high throughput screening assays using both cell-based and molecular approaches. The various ways to detect effects on cell viability and cell proliferation are summarised and examples are given of developments using three-dimensional cultures and cancer stem cells. Cell-based reporter assays have also been created in order to look more directly for effects on specific physiological pathways. The molecular assays include those directed at microtubules and related proteins and at many different protein kinases.

References

  • 1 Newman D J, Cragg G M. Natural products as sources of new drugs over the last 25 years.  J Nat Prod. 2007;  70 461-477
  • 2 Butler M S. Natural products to drugs: natural product-derived compounds in clinical trials.  Nat Prod Rep. 2008;  25 475-516
  • 3 Harvey A L. Natural products in drug discovery.  Drug Discov Today. 2008;  13 894-901
  • 4 Mayr L M, Bojanic D. Novel trends in high-throughput screening.  Curr Opin Pharmacol. 2009;  9 580-588
  • 5 Hergenrother P J. Obtaining and screening compound collections: a user's guide and a call to chemists.  Curr Opin Chem Biol. 2006;  10 213-218
  • 6 Frearson J A, Collie I T. HTS and hit finding in academia – from chemical genomics to drug discovery.  Drug Discov Today. 2009;  14 1150-1158
  • 7 Efferth T, Kahl S, Paulus K, Adams M, Rauh R, Boechzelt H, Hao X, Kaina B, Bauer R. Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells.  Mol Cancer Ther. 2008;  7 152-161
  • 8 Ma X, Wang Z. Anticancer drug discovery in the future: an evolutionary perspective.  Drug Discov Today. 2009;  14 1136-1142
  • 9 Fenical W, Jensen P R, Palladino M A, Lam K S, Lloyd G K, Potts B C. Discovery and development of the anticancer agent salinosporamide A (NPI-0052).  Bioorg Med Chem. 2009;  17 2175-2180
  • 10 Glaser K B, Mayer A M. A renaissance in marine pharmacology: from preclinical curiosity to clinical reality.  Biochem Pharmacol. 2009;  78 440-448
  • 11 Menna M. Antitumor potential of natural products from Mediterranean ascidians.  Phytother Rev. 2009;  8 461-472
  • 12 Molinski T F, Dalisay D S, Lievens S L, Saludes J P. Drug development from marine natural products.  Nat Rev Drug Discov. 2009;  8 69-85
  • 13 Bailly C. Ready for a comeback of natural products in oncology.  Biochem Pharmacol. 2009;  77 1447-1457
  • 14 Coseri S. Natural products and their analogues as efficient anticancer drugs.  Mini Rev Med Chem. 2009;  9 560-571
  • 15 Peddibhotla S. 3-Substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities.  Curr Bioactive Compounds. 2009;  5 20-38
  • 16 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 17 Iljin K, Ketola K, Vainio P, Halonen P, Kohonen P, Fey V, Grafström R C, Perälä M, Kallioniemi O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth.  Clin Cancer Res. 2009;  15 6070-6078
  • 18 Guzmán E A, Johnson J D, Carrier M K, Meyer C I, Pitts T P, Gunasekera S P, Wright A E. Selective cytotoxic activity of the marine-derived batzelline compounds against pancreatic cancer cell lines.  Anticancer Drugs. 2009;  20 149-155
  • 19 Galluzzi L, Aaronson S A, Abrams J, Alnemri E S, Andrews D W, Baehrecke E H, Bazan N G, Blagosklonny M V, Blomgren K, Borner C, Bredesen D E, Brenner C, Castedo M, Cidlowski J A, Ciechanover A, Cohen G M, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht B D, El-Deiry W S, Flavell R A, Fulda S, Garrido C, Golstein P, Gougeon M L, Green D R, Gronemeyer H, Hajnóczky G, Hardwick J M, Hengartner M O, Ichijo H, Jäättelä M, Kepp O, Kimchi A, Klionsky D J, Knight R A, Kornbluth S, Kumar S, Levine B, Lipton S A, Lugli E, Madeo F, Malomi W, Marine J C, Martin S J, Medema J P, Mehlen P, Melino G, Moll U M, Morselli E, Nagata S, Nicholson D W, Nicotera P, Nuñez G, Oren M, Penninger J, Pervaiz S, Peter M E, Piacentini M, Prehn J H, Puthalakath H, Rabinovich G A, Rizzuto R, Rodrigues C M, Rubinsztein D C, Rudel T, Scorrano L, Simon H U, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden K H, Youle R J, Yuan J, Zhivotovsky B, Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.  Cell Death Differ. 2009;  16 1093-1107
  • 20 Shum D, Radu C, Kim E, Cajuste M, Shao Y, Seshan V E, Djaballah H. A high density assay format for the detection of novel cytotoxic agents in large chemical libraries.  J Enzyme Inhib Med Chem. 2008;  23 931-945
  • 21 Hägg M, Bivén K, Ueno T, Rydlander L, Björklund P, Wiman K G, Shoshan M, Linder S. A novel high-through-put assay for screening of pro-apoptotic drugs.  Invest New Drugs. 2002;  20 253-259
  • 22 Antczak C, Takagi T, Ramirez C N, Radu C, Djaballah H. Live-cell imaging of caspase activation for high-content screening.  J Biomol Screen. 2009;  14 956-969
  • 23 Auld D S, Thorne N, Nguyen D T, Inglese J. A specific mechanism for nonspecific activation in reporter-gene assays.  ACS Chem Biol. 2008;  3 463-470
  • 24 Auld D S, Southall N T, Jadhav A, Johnson R L, Diller D J, Simeonov A, Austin C P, Inglese J. Characterization of chemical libraries for luciferase inhibitory activity.  J Med Chem. 2008;  51 2372-2386
  • 25 Shoichet B K. Screening in a spirit haunted world.  Drug Discov Today. 2006;  11 607-615
  • 26 Riss T L, Moravec R A. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays.  Assay Drug Dev Technol. 2004;  2 51-62
  • 27 Niles A L, Moravec R A, Eric Hesselberth P, Scurria M A, Daily W J, Riss T L. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers.  Anal Biochem. 2007;  366 197-206
  • 28 Niles A L, Moravec R A, Riss T L. Multiplex caspase activity and cytotoxicity assays.  Methods Mol Biol. 2008;  414 151-162
  • 29 Cen H, Mao F, Aronchik I, Fuentes R J, Firestone G L. DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells.  FASEB J. 2008;  22 2243-2252
  • 30 Halliwell B. Oxidative stress in cell culture: an under-appreciated problem?.  FEBS Lett. 2003;  540 3-6
  • 31 Fernando A, Glaysher S, Conroy M, Pekalski M, Smith J, Knight L A, Di Nicolantonio F, Cree I A. Effect of culture conditions on the chemosensitivity of ovarian cancer cell lines.  Anticancer Drugs. 2006;  17 913-919
  • 32 Sims J T, Plattner R. MTT assays cannot be utilized to study the effects of STI571/Gleevec on the viability of solid tumor cell lines.  Cancer Chemother Pharmacol. 2009;  64 629-633
  • 33 Liu W M, Dalgleish A G. MTT assays can underestimate cell numbers.  Cancer Chemother Pharmacol. 2009;  64 861-862
  • 34 Plumb J A, Milroy R, Kaye S B. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay.  Cancer Res. 1989;  49 4435-4440
  • 35 Gupta P B, Onder T T, Jiang G, Tao K, Kuperwasser C, Weinberg R A, Lander E S. Identification of selective inhibitors of cancer stem cells by high-throughput screening.  Cell. 2009;  138 645-659
  • 36 Kawasaki B T, Hurt E M, Mistree T, Farrar W L. Targeting cancer stem cells with phytochemicals.  Mol Interv. 2008;  8 174-184
  • 37 Desbordes S C, Placantonakis D G, Ciro A, Socci N D, Lee G, Djaballah H, Studer L. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells.  Cell Stem Cell. 2008;  2 602-612
  • 38 Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells.  Biochem Biophys Res Commun. 2009;  390 743-749
  • 39 Thierbach R, Steinberg P. Automated soft agar assay for the high-throughput screening of anticancer compounds.  Anal Biochem. 2009;  387 318-320
  • 40 Budman D R, Calabro A, Kreis W. Synergistic and antagonistic combinations of drugs in human prostate cancer cell lines in vitro.  Anticancer Drugs. 2002;  13 1011-1016
  • 41 Di Nicolantonio F, Neale M H, Knight L A, Lamont A, Skailes G E, Osborne R J, Allerton R, Kurbacher C M, Cree I A. Use of an ATP-based chemosensitivity assay to design new combinations of high-concentration doxorubicin with other drugs for recurrent ovarian cancer.  Anticancer Drugs. 2002;  13 625-630
  • 42 Larsson D E, Hassan S, Larsson R, Oberg K, Granberg D. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines.  Cancer Chemother Pharmacol. 2009;  65 5-12
  • 43 Schimmer A D, Thomas M P, Hurren R, Gronda M, Pellecchia M, Pond G R, Konopleva M, Gurfinkel D, Mawji I A, Brown E, Reed J C. Identification of small molecules that sensitize resistant tumor cells to tumor necrosis factor-family death receptors.  Cancer Res. 2006;  66 2367-2375
  • 44 Booth N L, Sayers T J, Brooks A D, Thomas C L, Jacobsen K, Goncharova E I, McMahon J B, Henrich C J. A cell-based high-throughput screen to identify synergistic TRAIL sensitizers.  Cancer Immunol Immunother. 2009;  58 1229-1244
  • 45 Kunz-Schughart L A, Freyer J P, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model.  J Biomol Screen. 2004;  9 273-285
  • 46 Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis.  J Biomol Screen. 2006;  11 922-932
  • 47 Friedrich J, Seidel C, Ebner R, Kunz-Schughart L A. Spheroid-based drug screen: considerations and practical approach.  Nat Protoc. 2009;  4 309-324
  • 48 Herrmann R, Fayad W, Schwarz S, Berndtsson M, Linder S. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids.  J Biomol Screen. 2008;  13 1-8
  • 49 Hartman O, Zhang C, Adams E L, Farach-Carson M C, Petrelli N J, Chase B D, Rabolt J F. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications.  Biomacromolecules. 2009;  10 2019-2032
  • 50 Adanja I, Debeir O, Mégalizzi V, Kiss R, Warzée N, Decaestecker C. Automated tracking of unmarked cells migrating in three-dimensional matrices applied to anti-cancer drug screening.  Exp Cell Res. 2010;  316 181-193
  • 51 Glaysher S, Clements C, Harvey A L, Cree I A. High throughput screening of potential anti-cancer agents in primary cell culture using an ATP based luminescence assay. Proceedings AACR 101st Annual meeting. Washington, DC; 2010
  • 52 Milroy L G, Zinzalla G, Loiseau F, Qian Z, Prencipe G, Pepper C, Fegan C, Ley S V. Natural-product-like spiroketals and fused bicyclic acetals as potential therapeutic agents for B-cell chronic lymphocytic leukaemia.  Chem Med Chem. 2008;  3 1922-1935
  • 53 Bialkowska A B, Du Y, Fu H, Yang V W. Identification of novel small-molecule compounds that inhibit the proproliferative Kruppel-like factor 5 in colorectal cancer cells by high-throughput screening.  Mol Cancer Ther. 2009;  8 563-570
  • 54 Lin W H, Song J S, Chang T Y, Chang C Y, Fu Y N, Yeh C L, Wu S H, Huang Y W, Fang M Y, Lien T W, Hsieh H P, Chao Y S, Huang S F, Tsai S F, Wang L M, Hsu J T, Chen Y R. A cell-based high-throughput screen for epidermal growth factor receptor pathway inhibitors.  Anal Biochem. 2008;  377 89-94
  • 55 Farkas T, Høyer-Hansen M, Jäättelä M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux.  Autophagy. 2009;  5 1018-1025
  • 56 Ausseil F, Samson A, Aussagues Y, Vandenberghe I, Creancier L, Pouny I, Kruczynski A, Massiot G, Bailly C. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.  J Biomol Screen. 2007;  12 106-116
  • 57 Vandenberghe I, Créancier L, Vispé S, Annereau J P, Barret J M, Pouny I, Samson A, Aussagues Y, Massiot G, Ausseil F, Bailly C, Kruczynski A. Physalin B, a novel inhibitor of the ubiquitin-proteasome pathway, triggers NOXA-associated apoptosis.  Biochem Pharmacol. 2008;  76 453-462
  • 58 Taldone T, Sun W, Chiosis G. Discovery and development of heat shock protein 90 inhibitors.  Bioorg Med Chem. 2009;  17 2225-2235
  • 59 Hardcastle A, Tomlin P, Norris C, Richards J, Cordwell M, Boxall K, Rowlands M, Jones K, Collins I, McDonald E, Workman P, Aherne W. A duplexed phenotypic screen for the simultaneous detection of inhibitors of the molecular chaperone heat shock protein 90 and modulators of cellular acetylation.  Mol Cancer Ther. 2007;  6 1112-1122
  • 60 Avila C, Hadden M K, Ma Z, Kornilayev B A, Ye Q Z, Blagg B S. High-throughput screening for Hsp90 ATPase inhibitors.  Bioorg Med Chem Lett. 2006;  16 3005-3008
  • 61 Galam L, Hadden M K, Ma Z, Ye Q Z, Yun B G, Blagg B S, Matts R L. High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase.  Bioorg Med Chem. 2007;  15 1939-1946
  • 62 Amolins M W, Blagg B S. Natural product inhibitors of Hsp90: potential leads for drug discovery.  Mini Rev Med Chem. 2009;  9 140-152
  • 63 Xia M, Huang R, Sun Y, Semenza G L, Aldred S F, Witt K L, Inglese J, Tice R R, Austin C P. Identification of chemical compounds that induce HIF-1alpha activity.  Toxicol Sci. 2009;  112 153-163
  • 64 Nagle D G, Zhou Y D. Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1).  Curr Drug Targets. 2006;  7 355-369
  • 65 Nagle D G, Zhou Y D. Marine natural products as inhibitors of hypoxic signalling in tumors.  Phytochem Res. 2009;  8 415-429
  • 66 Vousden K H, Lane D P. p 53 in health and disease.  Nat Rev Mol Cell Biol. 2007;  8 275-283
  • 67 Ishi K, Sugawara F. A facile method to screen inhibitors of protein-protein interactions including MDM2-p 53 displayed on T7 phage.  Biochem Pharmacol. 2008;  75 1743-1750
  • 68 Sasiela C A, Stewart D H, Kitagaki J, Safiran Y J, Yang Y, Weissman A M, Oberoi P, Davydov I V, Goncharova E, Beutler J A, McMahon J B, O'Keefe B R. Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen.  J Biomol Screen. 2008;  13 229-237
  • 69 McCulloch M W, Coombs G S, Banerjee N, Bugni T S, Cannon K M, Harper M K, Veltri C A, Virshup D M, Ireland C M. Psammaplin A as a general activator of cell-based signaling assays via HDAC inhibition and studies on some bromotyrosine derivatives.  Bioorg Med Chem. 2009;  17 2189-2198
  • 70 Goldstein D M, Gray N S, Zarrinkar P P. High-throughput kinase profiling as a platform for drug discovery.  Nat Rev Drug Discov. 2008;  7 391-397
  • 71 Kozielski F, DeBonis S, Skoufias D A. Screening for inhibitors of microtubule-associated motor proteins.  Methods Mol Med. 2007;  137 189-207
  • 72 Altmann K H, Gertsch J. Anticancer drugs from nature – natural products as a unique source of new microtubule-stabilizing agents.  Nat Prod Rep. 2007;  24 327-357
  • 73 Gallagher Jr B M. Microtubule-stabilizing natural products as promising cancer therapeutics.  Curr Med Chem. 2007;  14 2959-2967
  • 74 Klar U, Hoffmann J, Giurescu M. Sagopilone (ZK-EPO): from a natural product to a fully synthetic clinical development candidate.  Expert Opin Investig Drugs. 2008;  17 1735-1748
  • 75 Browne B C, O'Brien N, Duffy M J, Crown J, O'Donovan N. HER-2 signaling and inhibition in breast cancer.  Curr Cancer Drug Targets. 2009;  9 419-438
  • 76 Eglen R M, Reisine T. The current status of drug discovery against the human kinome.  Assay Drug Dev Technol. 2009;  7 22-43
  • 77 Hartmann J T, Haap M, Kopp H G, Lipp H P. Tyrosine kinase inhibitors – a review on pharmacology, metabolism and side effects.  Curr Drug Metab. 2009;  10 470-481
  • 78 Ivy S P, Wick J Y, Kaufman B M. An overview of small-molecule inhibitors of VEGFR signaling.  Nat Rev Clin Oncol. 2009;  6 569-579
  • 79 Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities.  Anticancer Drugs. 2009;  20 851-855
  • 80 Gautschi O, Heighway J, Mack P C, Purnell P R, Lara Jr P N, Gandara D R. Aurora kinases as anticancer drug targets.  Clin Cancer Res. 2008;  14 1639-1648
  • 81 Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer.  Nat Rev Drug Discov. 2009;  8 547-566
  • 82 Ma H, Deacon S, Horiuchi K. The challenge of selecting protein kinase assays for lead discovery optimization.  Expert Opin Drug Discov. 2008;  3 607-621
  • 83 Dufau I, Lazzari A, Samson A, Pouny I, Ausseil F. Optimization of a homogeneous assay for kinase inhibitors in plant extracts.  Assay Drug Dev Technol. 2008;  6 673-682
  • 84 Karaman M W, Herrgard S, Treiber D K, Gallant P, Atteridge C E, Campbell B T, Chan K W, Ciceri P, Davis M I, Edeen P T, Faraoni R, Floyd M, Hunt J P, Lockhart D J, Milanov Z V, Morrison M J, Pallares G, Patel H K, Pritchard S, Wodicka L M, Zarrinkar P P. A quantitative analysis of kinase inhibitor selectivity.  Nat Biotechnol. 2008;  26 127-132
  • 85 Holder S, Zemskova M, Zhang C, Tabrizizad M, Bremer R, Neidigh J W, Lilly M B. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.  Mol Cancer Ther. 2007;  6 163-172
  • 86 Gaisina I N, Gallier F, Ougolkov A V, Kim K H, Kurome T, Guo S, Holzle D, Luchini D N, Blond S Y, Billadeau D D, Kozikowski A P. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells.  J Med Chem. 2009;  52 1853-1863
  • 87 Simard J R, Klüter S, Grütter C, Getlik M, Rabiller M, Rode H B, Rauh D. A new screening assay for allosteric inhibitors of cSrc.  Nat Chem Biol. 2009;  5 394-396
  • 88 Simard J R, Getlik M, Grütter C, Pawar V, Wulfert S, Rabiller M, Rauh D. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors.  J Am Chem Soc. 2009;  131 13286-13296
  • 89 Hashimoto J, Watanabe T, Seki T, Karasawa S, Izumikawa M, Seki T, Iemura S, Natsume T, Nomura N, Goshima N, Miyawaki A, Takagi M, Shin-Ya K. Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format.  J Biomol Screen. 2009;  14 970-979
  • 90 Reindl W, Strebhardt K, Berg T. A high-throughput assay based on fluorescence polarization for inhibitors of the polo-box domain of polo-like kinase 1.  Anal Biochem. 2008;  383 205-209
  • 91 Reindl W, Gräber M, Strebhardt K, Berg T. Development of high-throughput assays based on fluorescence polarization for inhibitors of the polo-box domains of polo-like kinases 2 and 3.  Anal Biochem. 2009;  395 189-194
  • 92 Reindl W, Yuan J, Krämer A, Strebhardt K, Berg T. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions.  Chem Biol. 2008;  15 459-466
  • 93 Kim L C, Song L, Haura E B. Src kinases as therapeutic targets for cancer.  Nat Rev Clin Oncol. 2009;  6 587-595
  • 94 Sperl B, Seifert M H, Berg T. Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.  Bioorg Med Chem Lett. 2009;  19 3305-3309
  • 95 Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition.  Chem Rev. 2009;  109 2894-2902
  • 96 Nitiss J L. Targeting DNA topoisomerase II in cancer chemotherapy.  Nat Rev Cancer. 2009;  9 338-350
  • 97 Bakan A, Lazo J S, Wipf P, Brummond K M, Bahar I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening.  Curr Med Chem. 2008;  15 2536-2544
  • 98 Johnston P A, Foster C A, Tierno M B, Shun T Y, Shinde S N, Paquette W D, Brummond K M, Wipf P, Lazo J S. Cdc25B dual-specificity phosphatase inhibitors identified in a high-throughput screen of the NIH compound library.  Assay Drug Dev Technol. 2009;  7 250-265
  • 99 Hammond E, Li C P, Ferro V. Development of a colorimetric assay for heparanase activity suitable for kinetic analysis and inhibitor screening.  Anal Biochem. 2010;  396 112-116
  • 100 Shelton C C, Tian Y, Shum D, Radu C, Djaballah H, Li Y M. A miniaturized 1536-well format gamma-secretase assay.  Assay Drug Dev Technol. 2009;  7 461-470
  • 101 Huang H, Tanaka H, Hammock B D, Morisseau C. Novel and highly sensitive fluorescent assay for leucine aminopeptidases.  Anal Biochem. 2009;  391 11-16
  • 102 Hauser A T, Jung M, Jung M. Assays for histone deacetylases.  Curr Top Med Chem. 2009;  9 227-234
  • 103 Zon L I, Le X. Potential of zebrafish for anticancer screening.  Expert Opin Drug Discov. 2008;  3 1451-1460
  • 104 Crawford A D, Esguerra C V, de Witte P A. Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery.  Planta Med. 2008;  74 624-632
  • 105 Maule J, Richardson J, Clements C, Harvey A, Patton E. A pilot screen for natural inhibitors of cancer-relevant signalling pathways. 5th Eur Zebrafish Genet Dev Meeting, Amsterdam. 2007

Alan L. Harvey

Strathclyde Institute of Pharmacy and Biomedical Sciences
University of Strathclyde

27 Taylor Street

Glasgow G4 0NR

United Kingdom

Phone: +44 141 5 53 41 55

Fax: +44 141 5 52 83 76

Email: a.l.harvey@strath.ac.uk

    >