Synthesis 2023; 55(22): 3799-3808
DOI: 10.1055/a-2147-1336
paper

Palladium/Charcoal-Catalysed Olefin Reduction for the Simple and Efficient Synthesis of Substituted gem-Diborylalkanes

Kanak Kanti Das
,
Debraj Ghorai
,
Somenath Mahato
,
Santanu Panda
This work was supported by the Department of Science and Technology (DST), Science and Engineering Research Board (CRG/2020/001892). K.K.D. thanks the Indian Institute of Technology Kharagpur (IIT Kharagpur) for a fellowship. D.G. and S.M. thank the Council of Scientific and Industrial Research, India (CSIR India) for their fellowships.


Abstract

gem-Diborylalkanes have recently emerged as valuable synthons for diverse C–C bond-forming reactions. They represent an important class of bifunctional reagents that can be applied for the synthesis of simple to complex skeletons. Herein, we report a Pd-catalysed hydrogenation method for the synthesis of gem-diborylalkanes from the corresponding gem-diborylalkenes, which are themselves prepared from the corresponding aldehydes and ketones using known procedures. In addition, transformations of two representative gem-diborylalkane products are discussed leading to a range of functionalised derivatives.

Supporting Information



Publication History

Received: 28 May 2023

Accepted after revision: 02 August 2023

Accepted Manuscript online:
02 August 2023

Article published online:
28 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Boron-Based Compounds: Potential and Emerging Applications in Medicine. Hawkins-Hey E, Teixidor CV. Wiley-VCH; Weinheim: 2018
    • 1b Synthesis and Application of Organoboron Compounds. In Topics in Organometallic Chemistry, Vol. 49. Fernández E, Whiting A. Springer; Switzerland: 2015
    • 1c Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005
    • 1d Nandy S, Paul S, Das KK, Kumar P, Ghorai D, Panda S. Org. Biomol. Chem. 2021; 19: 7276
    • 1e Manna S, Das KK, Nandy S, Aich D, Paul S, Panda S. Coord. Chem. Rev. 2021; 448: 214165
    • 1f Hari DP, Abell JC, Fasano V, Aggarwal VK. J. Am. Chem. Soc. 2020; 142: 5515
    • 1g Noble A, Roesner S, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 15920
    • 1h Roesner S, Blair DJ, Aggarwal VK. Chem. Sci. 2015; 6: 3718
    • 1i Zhang C, Hu W, Lovinger GJ, Jin J, Chen J, Morken JP. J. Am. Chem. Soc. 2021; 143: 14189
    • 1j Myhill JA, Wilhelmsen CA, Zhang L, Morken JP. J. Am. Chem. Soc. 2018; 140: 15181
    • 1k Blair DJ, Fletcher CJ, Wheelhouse KM. P, Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 5552
    • 1l Liu X, Deaton TM, Haeffner F, Morken JP. Angew. Chem. Int. Ed. 2017; 56: 11485
    • 1m Bold CP, Yeung K, Pape F, Kaiser D, Aggarwal VK. Org. Lett. 2022; 24: 9398
    • 1n Fairchild M, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2022; 61: e202205816
    • 1o Fiorito D, Keskin S, Bateman JM, George M, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2022; 144: 7995
    • 1p Cascia EL, Cuenca AB, Fernández E. Chem. Eur. J. 2016; 22: 18737
    • 2a Zhang F, Wu D, Xu Y, Feng XJ. Mater. Chem. 2011; 21: 17590
    • 2b Wagner RW, Lindsey JS. Pure Appl. Chem. 1996; 68: 1373
    • 2c Singh VD, Dwivedi BK, Kumar Y, Pandey DS. New J. Chem. 2021; 45: 1677
    • 3a Hari DP, Madhavachary R, Fasano V, Haire J, Aggarwal VK. J. Am. Chem. Soc. 2021; 143: 7462
    • 3b Wang H, Jing C, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 16859
    • 3c Collins BS. L, Wilson CM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 11700
    • 3d Armstrong RJ, Aggarwal VK. Synthesis 2017; 49: 3323
    • 3e Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
    • 3f Silvi M, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 9511
    • 3g Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
    • 4a Panda S, Ready JM. J. Am. Chem. Soc. 2017; 139: 6038
    • 4b Panda S, Ready JM. J. Am. Chem. Soc. 2018; 140: 13242
    • 4c Das KK, Panda S. Chem. Eur. J. 2020; 26: 14270
    • 4d Das KK, Manna S, Panda S. Chem. Commun. 2021; 57: 441
    • 4e Das KK, Kumar P, Ghorai D, Mondal B, Panda S. Asian J. Org. Chem. 2021; 11: e202100092
    • 4f Manna S, Das KK, Aich D, Panda S. Adv. Synth. Catal. 2021; 363: 2444
    • 6a Zhang L, Huang Z. J. Am. Chem. Soc. 2015; 137: 15600
    • 6b Uzelac M, Yuan K, Ingleson MJ. Organometallics 2020; 39: 1332
    • 6c Davenport E, Fernández E. Chem. Commun. 2018; 54: 10104
    • 6d Miralles N, Alam R, Szabó KJ, Fernàndez E. Angew. Chem. Int. Ed. 2016; 55: 4303
    • 7a Han S, Lee Y, Jung Y, Cho SH. Angew. Chem. Int. Ed. 2022; 61: e202210532
    • 7b Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Angew. Chem. Int. Ed. 2022; 61: e202209079
    • 7c Kim H, Jung Y, Cho SH. Org. Lett. 2022; 24: 2705
    • 7d Jo W, Lee JH, Cho SH. Chem. Commun. 2021; 57: 4346
    • 7e Lee Y, Han S, Cho SH. Acc. Chem. Res. 2021; 54: 3917
    • 7f Kim M, Park B, Shin M, Kim S, Kim J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2021; 143: 1069
    • 7g Jo W, Baek S.-y, Hwang C, Heo J, Baik MH, Cho SH. J. Am. Chem. Soc. 2020; 142: 13235
    • 7h Shin M, Kim M, Hwang C, Lee H, Kwon H, Park J, Lee E, Cho SH. Org. Lett. 2020; 22: 2476
    • 7i Kim J, Shin M, Cho SH. ACS Catal. 2019; 9: 8503
    • 7j Lee H, Lee Y, Cho SH. Org. Lett. 2019; 21: 5912
    • 7k Kim J, Cho SH. ACS Catal. 2019; 9: 230
    • 7l Kim J, Hwang C, Kim Y, Cho SH. Org. Process Res. Dev. 2019; 23: 1663
    • 7m Lee Y, Park J, Cho SH. Angew. Chem. Int. Ed. 2018; 57: 12930
    • 7n Kim J, Ko K, Cho SH. Angew. Chem. Int. Ed. 2017; 56: 11584
    • 7o Hwang C, Jo W, Cho SH. Chem. Commun. 2017; 53: 7573
    • 7p Lee Y, Baek S.-y, Park J, Kim S.-T, Tussupbayev S, Kim J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2017; 139: 976
    • 7q Fernández CE. Chem. Soc. Rev. 2021; 50: 72
    • 7r Salvado O, Fernández E. Chem. Commun. 2021; 57: 6300
    • 7s Gava R, Fernández E. Chem. Eur. J. 2019; 25: 8013
    • 7t Salvado O, Gava R, Fernández E. Org. Lett. 2019; 21: 9247
    • 7u Jo W, Kim J, Choi S, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
    • 7v Park J, Lee Y, Kim J, Cho SH. Org. Lett. 2016; 18: 1210
    • 7w Kim J, Park S, Park J, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 1498
    • 7x Namirembe S, Gao C, Wexler RP, Morken JP. Org. Lett. 2019; 21: 4392
    • 7y Potter B, Szymaniak AA, Edelstein EK, Morken JP. J. Am. Chem. Soc. 2014; 136: 17918
    • 8a Cuenca AB, Fernández E. Chem. Soc. Rev. 2021; 50: 72
    • 8b Babu KN, Massarwe F, Reddy RR, Eghbarieh N, Jakob M, Masarwa A. Molecules 2020; 25: 959
    • 8c Zhang C, Hu W, Morken JP. ACS Catal. 2021; 11: 10660
    • 8d Paul S, Das KK, Aich D, Manna S, Panda S. Org. Chem. Front. 2022; 9: 838
    • 8e Xu N, Liang H, Morken JP. J. Am. Chem. Soc. 2022; 144: 11546
    • 8f Wheatley E, Zanghi JM, Mason MM, Meek SJ. Angew. Chem. Int. Ed. 2023; 62: e202215855
    • 8g Liang MZ, Meek SJ. J. Am. Chem. Soc. 2020; 142: 9925
    • 8h Wheatley E, Zanghi JM, Meek SJ. Org. Lett. 2020; 22: 9269
    • 8i Zanghi JM, Meek SJ. Angew. Chem. Int. Ed. 2020; 59: 8451
    • 8j Green JC, Zanghi JM, Meek SJ. J. Am. Chem. Soc. 2020; 142: 1704
    • 8k Murray SA, Liang MZ, Meek SJ. J. Am. Chem. Soc. 2017; 139: 14061
    • 8l Murray SA, Green JC, Tailor SB, Meek SJ. Angew. Chem. Int. Ed. 2016; 55: 9065
    • 8m Joannou MV, Moyer BS, Goldfogel MJ, Meek SJ. Angew. Chem. Int. Ed. 2015; 54: 14141
    • 8n Murray SA, Luc EC. M, Meek SJ. Org. Lett. 2018; 20: 469
    • 8o Wilhelmsen CA, Zhang X, Myhill JA, Morken JP. Angew. Chem. Int. Ed. 2022; 61: e2021167
    • 8p Sun C, Potter B, Morken JP. J. Am. Chem. Soc. 2014; 136: 6534
    • 8q Law C, Kativhu E, Wang J, Morken JP. Angew. Chem. Int. Ed. 2020; 59: 10311
    • 8r Lovinger GJ, Morken JP. Eur. J. Org. Chem. 2020; 2362
    • 8s Lovinger GJ, Morken JP. J. Am. Chem. Soc. 2017; 139: 17293
    • 8t Lovinger GJ, Aparece MD, Morken JP. J. Am. Chem. Soc. 2017; 139: 3153
    • 8u Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2016; 351: 70
    • 8v Cuenca AB, Shishido R, Ito H, Fernández E. Chem. Soc. Rev. 2017; 46: 415
    • 9a Liu X, Sun C, Mlynarski S, Morken JP. Org. Lett. 2018; 20: 1898
    • 9b Namirembe S, Yan L, Morken JP. Org. Lett. 2020; 22: 9174
  • 10 Viereck P, Krautwald S, Pabst TP, Chirik PJ. J. Am. Chem. Soc. 2020; 142: 3923
  • 11 Ito H, Kubotaong K. Org. Lett. 2012; 14: 890
  • 12 Li H, Shangguan X, Zhang Z, Huang S, Zhang Y, Wang J. Org. Lett. 2014; 16: 448
  • 13 Wang L, Zhang T, Sun W, He Z, Xia C, Lan Y, Liu C. J. Am. Chem. Soc. 2017; 139: 5257
  • 14 Liang MZ, Meek SJ. Angew. Chem. Int. Ed. 2019; 58: 14234
  • 15 Endo K, Hirokami M, Shibata T. T. J. Org. Chem. 2010; 75: 3469
  • 16 Iacano CE, Stephens TC, Rajan TS, Pattison GA. J. Am. Chem. Soc. 2018; 140: 2036
  • 17 Li A, Yue G, Li Y, Pan X, Yang T-K. Tetrahedron: Asymmetry 2003; 14: 75
  • 18 Teo JW, Ge S. Angew. Chem. Int. Ed. 2018; 57: 12935
  • 19 Docherty HJ, Nicholson K, Dominey AP, Thomas SP. ACS Catal. 2020; 10: 4686
  • 20 Lin S, Wang L, Aminoleslami N, Lao y, Yagel C, Sharma A. Chem. Sci. 2019; 10: 4684
  • 21 Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Angew. Chem. Int. Ed. 2020; 59: 13608
  • 22 Nallagonda R, Karimov RR. ACS Catal. 2021; 11: 248
  • 23 Kumar N, Eghbarieh N, Stein T, Shames AI, Masarwa A. Chem. Eur. J. 2020; 26: 5360
  • 24 Wang Q, Biosca M, Himo F, Szabó KJ. Angew. Chem. Int. Ed. 2021; 60: 26327
  • 25 Teo WJ, Ge S. Angew. Chem. Int. Ed. 2018; 57: 1654
  • 26 Kharasch MS, Burt JG. J. Org. Chem. 1951; 16: 150
  • 27 Williams JW. J. Am. Chem. Soc. 1939; 61: 2248
  • 28 Adkins H, Kommes CE, Struss EF, Dasler W. J. Am. Chem. Soc. 1933; 55: 2992