Synthesis 2023; 55(10): 1533-1542
DOI: 10.1055/a-2005-4296
paper

Tandem Deoxygenative Geminal Fluorosulfonimidation of 1,2-Diketones via Formal N–F Insertion Enabled by Dealkylation-Resistant Phosphoramidite

Sujin Bak
,
Yeri Son
,
Sunjoo Hwang
,
Ha Eun Kim
,
Jun-Ho Choi
,
Won-jin Chung
This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1F1A1076028 and NRF-2022R1A2C1007351).


Abstract

Our group has recently developed an α-fluoroamine synthesis using dioxaphospholenes derived from various 1,2-diketones and the dealkylation-resistant phosphoramidite as carbene surrogates, enabling the formal insertion into the N–F bond of (PhSO2)2NF. This full account presents the scope and limitations in terms of the reactivity and the site selectivity; these were rationalized through computational analysis. In addition, the efforts to broaden the synthetic utility of the current process by incorporating other nitrogen nucleophiles and halogen electrophiles are described.

Supporting Information



Publication History

Received: 04 November 2022

Accepted after revision: 31 December 2022

Accepted Manuscript online:
31 December 2022

Article published online:
02 February 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Morgenthaler M, Schweizer E, Hoffmann-Röder A, Benini F, Martin RE, Jaeschke G, Wagner B, Fischer H, Bendels S, Zimmeril D, Schneider J, Diederich F, Kansy M, Müller K. ChemMedChem 2007; 2: 1100
    • 2a Donetti A, Cereda E, Ezhaya A, Micheletti R. J. Med. Chem. 1989; 32: 957
    • 2b van Niel MB, Collins I, Beer MS, Broughton HB, Cheng SK. F, Goodacre SC, Heald A, Locker KL, Mac-Leod AM, Morrison D, Moyes CR, O’Connor D, Pike A, Rowley M, Russell MG. N, Sohal B, Stanton JA, Thomas S, Verrier H, Watt AP, Castro JL. ­J. Med. Chem. 1999; 42: 2087
    • 2c Jeschke P. ChemBioChem 2004; 5: 570
    • 2d Böhm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, ObstSander U, Stahl M. ChemBioChem 2004; 5: 637
    • 2e Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 2f Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2g Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2h Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2i O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 2j Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2k Hunter L. Beilstein J. Org. Chem. 2010; 6: 38
    • 2l Gills EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 2m Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 2n Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 3a Stavber S, Pecan TS, Papež M, Zupan M. Chem. Commun. 1996; 2247
    • 3b Yadav JS, Reddy BV. S, Chary DN, Chandrakanth D. Tetrahedron Lett. 2009; 50: 1136
    • 3c Wu T, Yin G, Liu G. J. Am. Chem. Soc. 2009; 131: 16354
    • 3d Qiu S, Xu T, Zhou J, Guo Y, Liu G. J. Am. Chem. Soc. 2010; 132: 2856
    • 3e Duthion B, Pardo DG, Cossy J. Org. Lett. 2010; 12: 4620
    • 3f Kalow JA, Schmitt DE, Doyle AG. J. Org. Chem. 2012; 77: 4177
    • 3g Wang Q, Zhong W, Wei X, Ning M, Meng X, Li Z. Org. Biomol. Chem. 2012; 10: 8566
    • 3h Kong W, Feige P, de Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
    • 3i Suzuki S, Kamo T, Fukushi K, Hiramatsu T, Tokunaga E, Dohi T, Kita Y, Shibata N. Chem. Sci. 2014; 5: 2754
    • 3j Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
    • 3k Chen P, Liu G. Eur. J. Org. Chem. 2015; 4295
    • 3l Saavedra-Olavarría J, Arteaga GC, López JJ, Pérez EG. Chem. Commun. 2015; 51: 3379
    • 3m Lu D.-F, Zhu C.-L, Sears JD, Xu H. J. Am. Chem. Soc. 2016; 138: 11360
    • 3n Serguchev YA, Ponomarenko MV, Ignatév NV. J. Fluorine Chem. 2016; 185: 1
    • 3o Hou C, Chen P, Liu G. Angew. Chem. Int. Ed. 2020; 59: 2735
    • 3p Feng G, Ku CK, Zhao J, Wang Q. J. Am. Chem. Soc. 2022; 144: 20463
    • 4a Chen G, Song J, Yu Y, Luo X, Li C, Huang X. Chem. Sci. 2016; 7: 1786
    • 4b Zhou Y, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 10444
    • 4c Huang J, Li L, Chen H, Xiao T, He Y, Zhou L. Org. Chem. Front. 2017; 4: 529
    • 5a Ramirez F, Mitra RB, Desai NB. J. Am. Chem. Soc. 1960; 82: 2651
    • 5b Ramirez F, Desai NB. J. Am. Chem. Soc. 1960; 82: 2652
    • 5c Ramirez F. Pure Appl. Chem. 1964; 9: 337
    • 5d Ramirez F. Synthesis 1974; 90
    • 5e Ramirez F, Kugler HJ, Smith CP. Tetrahedron 1968; 24: 3153
    • 5f Ramirez F. Acc. Chem. Res. 1968; 1: 168
    • 5g Miller EJ, Zhao W, Herr JD, Radosevich AT. Angew. Chem. Int. Ed. 2012; 51: 10605
    • 5h Zhao W, Fink DM, Labutta CA, Radosevich AT. Org. Lett. 2013; 15: 3090
    • 5i Wang SR, Radosevich AT. Org. Lett. 2015; 17: 3810
    • 5j For a recent review, see: Liu Y, Sun F, He Z. Tetrahedron Lett. 2018; 59: 4136

      For recent applications of the Kukhtin–Ramirez reaction, see:
    • 6a Tan P, Wang SR. Org. Lett. 2019; 21: 6029
    • 6b Zhang J, Hao J, Huang Z, Han J, He Z. Chem. Commun. 2020; 56: 10251
    • 6c Liu R, Liu J, Cao J, Li R, Zhou R, Qiao Y, Gao W.-C. Org. Lett. 2020; 22: 6922
    • 6d Deng Y.-H, Chu W.-D, Shang Y.-H, Yu K.-Y, Jia Z.-L, Fan C.-A. Org. Lett. 2020; 22: 8376
    • 6e Jin S, Dang HT, Haug GC, Nguyen VD, Arman HD, Larionov OV. Chem. Sci. 2020; 11: 9101
    • 6f Tan P, Wang H, Wang SR. Org. Lett. 2021; 23: 2590
    • 6g Zhang J, Qiu Y, Zhang B, Huang Z, He Z. Org. Lett. 2021; 23: 1880
    • 6h Zhang Z, Jing L, Li E.-Q, Duan Z. Org. Chem. Front. 2022; 9: 3215
    • 7a Choi G, Kim HE, Hwang S, Jang H, Chung W.-j. Org. Lett. 2020; 22: 4190
    • 7b Son Y, Hwang S, Bak S, Kim HE, Choi J.-H, Chung W.-j. Org. Biomol. Chem. 2022; 20: 3263
    • 8a Chinchilla R, Najera C. Chem. Rev. 2007; 107: 874
    • 8b Chinchilla R, Najera C. Chem. Soc. Rev. 2011; 40: 5084
    • 8c Jung D.-Y, Park SY, Kim S.-H. Bull. Korean Chem. Soc. 2022; 43: 110
  • 9 Park K, Bae G, Cheo J, Song KH, Lee S. J. Org. Chem. 2010; 75: 6244
    • 10a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 10b Yan Q, Shen X, Zi G, Hou G. Chem. Eur. J. 2020; 26: 5961
    • 11a Xu Y, Wan X. Tetrahedron Lett. 2013; 54: 642
    • 11b Ren W, Liu J, Long C, Wan X. Adv. Synth. Catal. 2010; 352: 1424
  • 12 Sibi MP, Marvin M, Sharma R. J. Org. Chem. 1995; 60: 5016
    • 13a Harrington LE, Britten JF, Hughes DW, Bain AD, Thépot J.-Y, McGlinchey MJ. J. Organomet. Chem. 2002; 656: 243
    • 13b Reddy SR, Stella S, Chadha A. Synth. Commun. 2012; 42: 3493
    • 14a Hammett LP. J. Am. Chem. Soc. 1937; 59: 96
    • 14b Hammett LP. Chem. Rev. 1935; 17: 125
    • 14c Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
  • 15 CCDC 2110574 and CCDC 2110575 contain the supplementary crystallographic data for this study. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 16 In our related study on geminal chlorofluorination,7a chloride anion was nucleophilic enough to produce both constitutional isomers from 4n.
    • 17a The alkene geometry was assigned through comparison with the reported 1H–19F coupling constant of related compounds; see: Zhang H, Lin J.-H, Xiao J.-C, Gu Y.-C. Org. Biomol. Chem. 2014; 12: 581

    • See also:
    • 17b Brady SF, Ilton MA, Johnson WS. J. Am. Chem. Soc. 1968; 90: 2882
    • 17c Sarel S, Yovell J, Sarel-Imber M. Angew. Chem. Int. Ed. 1968; 7: 577
    • 18a Shohji N, Kawaji T, Okamoto S. Org. Lett. 2011; 13: 2626
    • 18b Zhou A, Shao Y, Chen F, Qian P.-C, Cheng J. Tetrahedron Lett. 2022; 89: 153597
  • 19 The imine geometry was assigned on the basis of computational calculation. The Z-isomer is more stable by 2.7 kcal/mol at the M06-2X-D3/6-31+G(d,p)/PCM(CH2Cl2) level.
  • 20 Cho E, Kim M, Jayaraman A, Kim J, Lee S. Eur. J. Org. Chem. 2018; 781
  • 21 Geminal aminochlorination has previously been shown to be challenging with diazo compounds.4a
  • 22 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc; Wallingford CT: 2019
  • 23 The initial input geometry was obtained by Molecular Orbital Package 2016: Stewart JJ. P. MOPAC2016. Stewart Computational Chemistry; Colorado Springs: 2016. http//openmopac.net/
    • 25a Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
    • 25b Peverati R, Baldridge KK. J. Chem. Theory Comput. 2008; 4: 2030
    • 26a Miertuš S, Scrocco E, Tomasi J. Chem. Phys. 1981; 55: 117
    • 26b Pascual-Ahuir JL, Silla E, Tuñón I. J. Comput. Chem. 1994; 15: 1127
    • 26c Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
    • 27a de Meijere A. Angew. Chem. Int. Ed. 1979; 18: 809
    • 27b Olah GA, Reddy VP, Prakash GK. S. Chem. Rev. 1992; 92: 69
  • 28 Nielsen DK, Doyle AG. Angew. Chem. Int. Ed. 2011; 50: 6056
  • 29 Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Org. Lett. 2019; 21: 6844