Planta Med 2018; 84(14): 988-1006
DOI: 10.1055/a-0583-0410
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Plants and Natural Products for the Treatment of Skin Hyperpigmentation – A Review

Mayuree Kanlayavattanakul
1   School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
2   Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, Thailand
,
Nattaya Lourith
1   School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
2   Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, Thailand
› Author Affiliations
Further Information

Publication History

received 13 November 2017
revised 10 February 2018

accepted 20 February 2018

Publication Date:
05 March 2018 (online)

Abstract

Skin hyperpigmentation is caused by several factors that upregulate melanogenesis. Plants and natural products with skin-whitening effects are gaining interest among consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This review extensively summarizes the status of plants and natural products currently used in skin-whitening cosmetics as well as potential candidates for future use, because the scope of natural choices for efficient treatment of skin hyperpigmentation is rapidly widening. Biological activities of plants and natural extracts are therefore available for cosmetic formulators and dermatologists interested in naturally derived ingredients for skin hyperpigmentation treatment and in accordance with the consumersʼ preferences and expectations upon natural cosmetic products.

 
  • References

  • 1 Kanlayavattanakul M, Lourith N. Skin hyperpigmentation treatment using herbs: a review of clinical evidences. J Cosmet Laser Ther 2017; DOI: 10.1080/14764172.2017.1368666.
  • 2 Kanlayavattanakul M, Lourith N. Therapeutic agents and herbs in topical application for acne treatment. Int J Cosmet Sci 2011; 33: 289-297
  • 3 Kanlayavattanakul M, Lourith N. An update on cutaneous aging treatment using herbs. J Cosmet Laser Ther 2015; 17: 343-352
  • 4 Lourith N, Kanlayavattanakul M. Hair loss and herbs for treatment. J Cosmet Dermatol 2013; 12: 210-222
  • 5 Ong MWS, Maibach HI. Skin whitening Agents. In: Barel AO, Paye M, Maibach HI. eds. Handbook of cosmetic Science and Technology, 4th ed. New York: CRC; 2014: 423-438
  • 6 Shin JW, Park KC. Current clinical use of depigmenting agents. Dermatol Sin 2014; 32: 205-210
  • 7 Michihara A, Morita S, Kirokawa Y, Ago S, Akasaki K, Tsuji H. Delta-tocotrienol causes decrease of melanin content in mouse melanoma cells. J Health Sci 2009; 55: 314-318
  • 8 Michihara A, Ogawa S, Kamizaki Y, Akasaki K. Effect of delta-tocotrienol on melanin content and enzymes for melanin synthesis in mouse melanoma cells. Biol Pharm Bull 2010; 33: 1471-1476
  • 9 Ng LT, Lin LT, Chen CL, Chen HW, Wu SJ, Lin CC. Anti-melanogenic effects of δ-tocotrienol are associated with tyrosinase-related proteins and MAPK signaling pathway in B16 melanoma cells. Phytomed 2014; 21: 978-983
  • 10 Chaiprasongsuk A, Onkoksoong T, Pluemsamran T, Limsaengurai S, Panich U. Photoprotection by dietary phenolics against melanonogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 2016; 8: 79-90
  • 11 Chung TW, Kim SJ, Choi HK, Kwak CH, Song KH, Suh SJ, Kim KJ, Ha KT, Park YG, Chang YC, Chang HW, Lee YC, Kim CH. CAPE suppresses VEGFR-2 activation, and tumor neovascularization and growth. J Mol Med 2013; 91: 271-282
  • 12 Lee JY, Choi HJ, Chung TW, Kim CH, Jeong HS, Ha KT. Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of mucrophthalmia-associated transcription factor. J Nat Prod 2013; 76: 1399-1405
  • 13 Bauzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 2016; 144: 80-85
  • 14 Sakuma K, Ogawa M, Sugibayashi K, Yamada KI, Yamamoto K. Relationship between tyrosinase inhibitory action and oxidation-reduction potential of cosmetic whitening ingredients and phenol derivatives. Arch Pharm Res 1999; 22: 335-339
  • 15 Kim DS, Park SH, Kwon SB, Li K, Youn SW, Park KC. (−)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Arch Pharm Res 2004; 27: 334-339
  • 16 Sasaki M, Kondo M, Sato K, Umeda M, Kawabata K, Takahashi Y, Suzuki T, Matsumaga K, Inoue S. Rhododendrol, a depigmentation-inducing phenolic compound, excerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Pigment Cell Melanoma Res 2014; 27: 754-763
  • 17 Ando H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, Matsunaga N, Hearing VJ, Ichihashi M. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res 1999; 40: 1312-1316
  • 18 Ando H, Watabe H, Valencia JC, Yasumoto K, Furumura M, Funasaka Y, Oka M, Ichihashi M, Hearing VJ. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase. J Biol Chem 2004; 279: 15427-15433
  • 19 Lam RYY, Lin ZX, Sviderskaya E, Cheng CHK. Application of a combined sulphorhodamine B and melanin assay to the evaluation of Chinese medicines and their constituent compounds for hyperpigmentation treatment. J Ethnopharmacol 2010; 132: 274-279
  • 20 Maeda K, Naitou T, Umishio K, Fukuhara T, Motoyama A. A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana . Biol Pharm Bull 2007; 30: 873-879
  • 21 Yamada M, Nakamura K, Watabe T, Ohno O, Kawagoshi M, Maru N, Uotsu N, Chiba T, Yamaguchi K, Uemura D. Melanin biosynthesis inhibitors from tarragon Artemisia dracunculus . Biosci Biotechnol Biochem 2011; 75: 1628-1630
  • 22 Dej-Adisai S, Meechai I, Puripattanavong J, Kummee S. Antityrosinase and antimicrobial activities from Thai medicinal plants. Arch Pharm Res 2014; 37: 473-483
  • 23 Jin YJ, Lin CC, Lu TM, Li JH, Chen IS, Kuo YH, Ko HH. Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochem 2015; 117: 424-435
  • 24 Arung ET, Shimizu K, Kondo R. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol Pharm Bull 2006; 29: 1966-1969
  • 25 Germanò MP, Cacciola F, Donato P, Dugo P, Certo G, DʼAngelo V, Mondello L, Rapisarda A. Betula pendula leaves: polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia 2012; 83: 877-882
  • 26 Mitani K, Takano F, Kawabata T, Allam AE, Ota M, Takahashi T, Yahagi N, Sakurada C, Fushiya S, Ohta T. Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan). Planta Med 2013; 79: 37-44
  • 27 Yamahara M, Sugimura K, Kumagai A, Fuchino H, Kuroi A, Kagawa M, Itoh Y, Kawahara H, Nagaoka Y, Iida O, Kawahara N, Takemori H, Watanabe H. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells. J Nat Med 2016; 70: 28-35
  • 28 Chen YS, Lee SM, Lin CC, Liu CY, Wu MC, Shi WL. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng 2013; 115: 242-245
  • 29 Roh JS, Han JY, Kim JH, Hwang JK. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 2004; 27: 1976-1978
  • 30 Kim JH, Choi GN, Kwak JH, Jeong CH, Jeong HR, Lee U, Kim MJ, Heo HJ. Inhibitory effects of chestnut inner skin extracts on melanogenesis. Food Sci Biotechnol 2012; 21: 1571-1576
  • 31 Graf BL, Cheng DM, Esposito D, Shertel T, Poulev A, Plundrich N, Itenberg D, Dayan N, Lila MA, Raskin I. Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygen species. Int J Cosmet Sci 2015; 37: 212-221
  • 32 Silveira JEPS, del Pereda MCW, Eberlin S, Dieamant GC, Di Stasi LC. Effects of Coccoloba uvifera L. on UV-stimulated melanocytes. Photodermatol Photoimmunol Photomed 2008; 24: 308-313
  • 33 Kim KH, Moon EM, Kim SY, Lee KR. Lignans from the tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic activity. J Agric Food Chem 2010; 58: 4779-4785
  • 34 Mustapha N, Bzéouich IM, Ghedira K, Hennebelle T, Chekir-Ghe-Dira L. Compounds isolated from the aerial part of Crataeues azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed Pharmacother 2015; 69: 139-144
  • 35 Li CY, Lee EJ, Wu TS. Antityrosinase principles and constituents of the petals of Crocus sativus . J Nat Prod 2004; 67: 437-440
  • 36 Hu S, Zheng Z, Chen F, Wang M. Activity and mechanism of natural resorcinol-type phenolics from the twigs of Curdrania tricuspidata as skin whitening agents. IFSCC Mag 2014; 17: 3-5
  • 37 Nam JH, Nam DY, Lee DU. Valencene from the rhizomes of Cyperus rotundus inhibits skin photoaging-related ion channels and UV-induced melanogenesis in B16F10 melanoma cells. J Nat Prod 2016; 79: 1091-1096
  • 38 Teixeira RDS, Rocho PR, Polonini HC, Antônio M, Brandão F, Chaves MDGAM, Raposo NRB. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils. Braz J Pharm Sci 2012; 48: 399-404
  • 39 Mulholland DA, Mwangi EM, Dlova NC, Plant N, Crouch NR, Coombes PH. Non-toxic melanin production inhibitors from Gracinia livingstonei (Clusiaceae). J Ethnopharmacol 2013; 149: 570-575
  • 40 Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, Yusa K, Koyota S, Sugiyama T. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem 2012; 76: 1877-1883
  • 41 Jin KS, Lee JY, Hyun SK, Kim BW, Kwon HJ. Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Sci Biotechnol 2015; 24: 611-618
  • 42 Lee CW, Kim HS, Kim HK, Kim JW, Yoon JH, Cho Y, Hwang JK. Inhibitory effect of panduratin A isolated from Kaempferia panduarata Roxb. on melanin biosynthesis. Phytother Res 2010; 24: 1600-1604
  • 43 Kanlayavattanakul M, Ospondpant D, Raktanonchai U, Lourith N. Biological activity assessment and phenolic compounds characterization from the fruit pericarp of Litchi chinensis for cosmetic application. Pharm Biol 2012; 50: 1384-1390
  • 44 Lourith N, Kanlayavattanakul M, Chaikul P. Chansriniyom C, Bunwatcharaphansakun P. In vitro and cellular activities of the selected fruits residues for skin aging treatment. An Acad Bras Ciênc 2017; 89: 577-589
  • 45 Lee SH, Choi SY, Kim H, Hwang JS, Lee BG, Gao JJ, Kim SY. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull 2002; 25: 1045-1048
  • 46 de Freitas MM, Fontes PR, Souza PM, Fagg CW, da Silva Guerra EN, de Medeiros Nóbrega YK, Silveira D, Fonseca-Bazzo Y, Simeoni LA, Homem-de-Mello M, Magalhães PO. Extracts of Morus nigra L. leaves standardized in chlorogenic acid, rutin and isoquercitrin: tyrosinase inhibition and cytotoxicity. PLoS One 2016; 11: e0163130
  • 47 Cho Y, Kim KH, Shim JS, Hwang JK. Inhibitory effects of macelignan isolated from Myristica fragrans HOUTT. on melanin biosynthesis. Biol Pharm Bull 2008; 31: 986-989
  • 48 Cho SJ, Kwon HS. Tyrosinase inhibitory activities of safrole from Myristica fragrans Houtt. J Appl Biol Chem 2015; 58: 295-301
  • 49 Wangthong S, Palaga T, Rengpipat S, Wanichwecharungruang SP, Chanchaisak P, Heinrich M. Biological activities and safety of thanaka (Hesperethusa crenulata) stem bark. J Ethnopharmacol 2010; 132: 466-472
  • 50 Lourith N, Kanlayavattanakul M, Pongpunyayuen S. Botanical Arbutin from Naringi crenulata . In: Hayes LM. ed. Cosmetics: Types, Allergies and Applications. New York: Nova; 2011: 157-164
  • 51 Lourith N, Kanlayavattanakul M, Pongpunyayuen S, Chaiwarith J. Characterization of arbutin and kojic acid in Naringi crenulata. Household Pers. Care Today 2012; 7: 20-21
  • 52 Pongpunyayuen P, Lourith N. Radical scavenging activity and phenolic compounds in rambutan peels extracts. Paccon Conference 2011. Bangkok, Thailand. 2011
  • 53 Kanlayavattanakul M, Lourith N, Chaikul P. Jasmine rice panicle: a safe and efficient natural ingredient for skin aging treatments. J Ethnopharmacol 2016; 193: 607-616
  • 54 Qiu J, Chen M, Liu J, Huang X, Chen J, Zhou L, Ma J, Sextius P, Pena AM, Cai Z, Jeulin S. The skin-depigmenting potential of Paeonia lactiflora root extract and paeoniflorin: in vitro evaluation using reconstructed pigmented human epidermis. Int J Cosmet Sci 2016; 38: 444-451
  • 55 Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T. Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J Agric Food Chem 2010; 58: 11112-11118
  • 56 Lourith N, Kanlayavattanakul M. Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue. J Oleo Sci 2013; 62: 235-240
  • 57 Lourith N, Kanlayavattanakul M, Chingunpitak J. Development of sunscreen products containing passion fruit seed extract. Braz J Pharm Sci 2017; 53: e16116
  • 58 Ko HH, Chiang YC, Tsai MH, Liang CJ, Hsu LF, Li SY, Wang MC, Yen FL, Lee CW. Eupofalin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: role of MAPK and Akt pathways. J Ethnopharmacol 2014; 151: 386-393
  • 59 Cho HR, Kang KA, Bhuiyan MIH, Oh MS, Lee MH, Kim YJ. Antimelanogenic effect of Pini Nodi Lignum extract in HM3KO melanoma cells. Mol Cell Toxicol 2011; 7: 135-139
  • 60 Diwakar G, Rana J, Saito L, Vredeveld D, Zemaitis D, Scholten J. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomergranate) fruit extracts on melanin production. Fitoterapia 2014; 97: 164-171
  • 61 Chiang HM, Chien YC, Wu CH, Kuo YH, Wu WC, Pan YY, Su YH, Wen KC. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF tyrosinase pathway. Food Chem Toxicol 2014; 65: 129-139
  • 62 Kim SH, Seo HS, Jang BH, Shin YC, Ko SG. The effect of Rhunas vernififlua strokes (RVS) for anti-aging and whitening of skin. Orient Pharm Exp Med 2014; 14: 213-222
  • 63 Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis . Phytomed 2016; 23: 1005-1011
  • 64 Lee DH, Kim DH, Oh IY, Kim SY, Lim YY, Kim MH, Kim YH, Choi YM, Kim SE, Kim BJ, Kim MN. Inhibitory effects of Saururi chinensis extracts on melanin biosynthesis in B16F10 melanoma cells. Biol Pharm Bull 2013; 36: 772-779
  • 65 Kumar CM, Sathisha UV, Dharmesh S, Rao AGA, Singh SA. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochime 2011; 93: 562-569
  • 66 Srisayam M, Weerapreeyakul N, Barusrux S, Kanokmedhakul K. Antioxidant, antimelanogenic, and skin-protective effect of sesamol. J Cosmet Sci 2014; 65: 69-79
  • 67 Kim JH, Lee SM, Myung CH, Lee KR, Hyun SM, Lee JE, Park YS, Jeon SR, Park JI, Chang SE, Hwang JS. Melanogenesis inhibition of β-lapachone, a natural product from Tabebuia avellanedae, with effective in vivo lightening potency. Arch Dermatol Res 2015; 307: 229-238
  • 68 Kanlayavattanakul M, Lourith N. Biologically active phenolics in seed coat of three sweet Tamarindus indica varieties grown in Thailand. Adv Sci Eng Med 2012; 4: 511-516
  • 69 Karim AA, Azlan A, Ismail A, Hashim P, Gani SSA, Zainudin BH, Abdullah NA. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med 2014; 14: 381
  • 70 Kim A, Yim NH, Im M, Jung YP, Liang C, Cho WK, Ma JY. Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells. BMC Complement Altern Med 2013; 13: 214
  • 71 Wang Z, Wang D, Liu L, Guo D, Yu B, Zhang B, Han B, Sun X, Zheng Q. Alteronol inhibits the invasion and metastasis of B16F10 and B16F1 melanoma cells in vitro and in vivo . Life Sci 2014; 98: 31-38
  • 72 Khammuang S, Sarnthima R. Decolorization of synthetic melanin by crude laccases of Lentinus polychrous Lév. Folia Microbiol 2013; 58: 1-7
  • 73 Jo D, Choe D, Nam K, Shin CS. Biological evaluation of novel derivatives of the orange pigments from Monascus sp. as inhibitors of melanogenesis. Biotechnol Lett 2014; 36: 1605-1613
  • 74 Wu LC, Chen YC, Ho JAA, Yang CS. Inhibitory effect of red koji extracts on mushroom tyrosinase. J Agric Food Chem 2003; 51: 4240-4246
  • 75 Kim KN, Yang HM, Kang SM, Kim D, Ahn G, Jeon YJ. Octaphlorethol A isolated from Ishige foliacea inhibits α-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells. Food Chem Toxicol 2013; 59: 521-526
  • 76 Chan YY, Kim KH, Cheah SH. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol 2011; 137: 1183-1188
  • 77 Kim MJ, Kim DS, Yoon HS, Lee WJ, Lee NH, Hyun CG. Melanogenesis inhibitory activity of Korean Undaria pinnatifida in mouse B16 melanoma cells. Interdiscip Toxicol 2014; 7: 89-92