Skip to main content
  • Original Article
  • Published:

The successional status of sugar maple (Acer saccharum), revisited

Révision du statut successionnel de l’érable à sucre (Acer saccharum)

Abstract

Two complementary experimental designs at two contrasting scales (landscape/long term; individual tree/short term) were used for an in-depth evaluation of the successional status of sugar maple (AS: Acer saccharum Marsh.). First, forest disturbances during the 20th century and composition were mapped for two landscapes in the Du Lièvre watershed of southern Quebec. Our results show that, as well as dominating stands in the absence of fire, AS often rapidly developed dominance after fire, especially in the south of our study area. Similarly, a majority of AS-dominated stands clearcut in 1928 continued to be AS-dominated 60 years later. Second, we examined AS seedlings planted under two very contrasting light regimes. AS seedlings showed a combination of traits particularly adapted to tolerate shade under a low light regime. However, owing to a surprisingly high phenotypic plasticity, AS also exhibited efficient development under high light. This suggests the classification of AS as a late-successional species should indeed be revised and that generalist or trans-successional would be a more appropriate designation for this species. We discuss the ramifications of such a status revision, with an emphasis on the implications for its silviculture.

Résumé

Deux dispositifs expérimentaux complémentaires, établis à deux échelles différentes (paysage/long terme et individu/court terme), ont été utilisés afin de mieux évaluer le statut successionnel de l’érable à sucre (AS : Acer saccharum Marsh.). D’abord, une cartographie des perturbations et de la composition forestière au cours du 20e siècle a été réalisée pour deux paysages du bassin du Lièvre dans le Sud du Québec. Nos résultats ont démontré qu’en plus de dominer les peuplements en absence de perturbation du couvert, AS établissait souvent et rapidement une dominance dans les peuplements ayant brûlé, et cela, particulièrement dans le paysage le plus au sud de l’air d’étude. De la même façon, une majorité de peuplements dominés par AS et coupés à blanc en 1928 s’est révélée encore dominée par AS à peine 60 ans après coupe. Ensuite, en réalisant le suivi de semis plantés sous deux régimes lumineux très différents, AS a montré un ensemble de caractéristiques particulièrement adaptées à une bonne tolérance à l’ombre. Cependant, grâce à une étonnante plasticité phénotypique, AS a aussi démontré un développement compétitif sous des régimes lumineux plus élevés. L’ensemble de ces résultats suggère donc une remise en question du statut de fin de succession de AS, lequel répondrait mieux à une appellation d’espèce généraliste ou trans-successionnelle. Les implications d’une telle révision sur la sylviculture de cette essence sont discutées.

References

  1. Arii K., Lechowicz M.J., The influence of overstory trees and abiotic factors on the sapling community in an old growth Fagus-Acer forest, Ecoscience 9 (2002) 386–396.

    Google Scholar 

  2. Baker F.S., A revised tolerance table, J. For. 47 (1949) 179–181.

    Google Scholar 

  3. Barbour M.G., Burk J.H., Pitts W.D., Terrestrial Plant Ecology, 2nd Ed., The Benjamin /Cummings Publishing Company, Inc., Menlo Park, CA, USA 1987, 634 p.

    Google Scholar 

  4. Bazzaz F.A., The physiological ecology of plant succession, Ann. Rev. Ecol. Syst. 10 (1979) 351–371.

    Article  Google Scholar 

  5. Bazzaz F.A., Carlson R.W., Photosynthetic acclimation to variability in the light environment of early and late successional plants, Oecologia 54 (1982) 313–316.

    Article  Google Scholar 

  6. Bonal D., Born C., Brechet C., Coste S.M.E., Roggy J.-C., Guehl J.-M., The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits, Ann. For. Sci 64 (2007) 169–176.

    Article  CAS  Google Scholar 

  7. Bragg D.C., Roberts D.W., Crow T.R., A hierarchical approach for simulating northern forest dynamics, Ecol. Model. 173 (2004) 31–94.

    Article  Google Scholar 

  8. Brisson J., Bergeron Y., Bouchard A., Les successions secondaires sur sites mésiques dans le Haut-Saint-Laurent, Québec, Canada, Can. J. Bot. 66 (1988) 1192–1203.

    Article  Google Scholar 

  9. Canham C.D., Growth and canopy architecture of shade tolerant trees: response to canopy gaps, Ecology 69 (1988) 786–795.

    Article  Google Scholar 

  10. Cash D.W., Adger W.N., Berkes F., Garden P., Lebel L., Olsson P., Pritchard L., Young O., Scale and cross-scale dynamics: Governance and information in a multilevel world, Ecol. Soc. 11 (2006) [online]: http://www.ecologyand society.org/vol1l/iss2/art8/.

  11. Castelli J.P., Brenda B.C., Sullivan J.J., Latham R.E., Early understory succession following catastrophic wind damage in a deciduous forest, Can. J. For. Res. 29 (1999) 1997–2002.

    Article  Google Scholar 

  12. Claveau Y., Messier C., Comeau P.G., Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance, Tree Physiol. 25 (2005) 373–384.

    PubMed  Google Scholar 

  13. Connell J.H., Slatyer R.O., Mechanisms of succession in natural communities and their role in community stability and organization, Am. Nat. 111 (1977) 1119–1144.

    Article  Google Scholar 

  14. Cooper S.D., Diehl S., Kratz K., Sarnelle O., Implications of scale for patterns and processes in stream ecology, Aust. J. Ecol. 23 (1998) 27–40.

    Article  Google Scholar 

  15. Crow T.R., Buckley D.S., Nauertz E.A., Zasada J.C., Effects on management on the composition structure of northern hardwood forests in upper Michigan, For. Sci. 48 (2002) 129–145.

    Google Scholar 

  16. Delagrange S., Messier C., Lechowicz M.J., Dizengremel P., Physiological, morphological and allocational plasticity in understory deciduous trees: Importance of individual size and light availability, Tree Physiol. 24 (2004) 775–784.

    PubMed  Google Scholar 

  17. Drever C.R., Messier C., Bergeron Y., Doyon F., Fire and canopy species composition in the Great Lakes-St. Lawrence forest of Temiscamingue, Québec, For. Ecol. Manage. 231 (2006) 27–37.

    Article  Google Scholar 

  18. Dunn C.P., Guntensperger G.R., Dorney J.R., Catastrophic wind disturbance in an old-growth hemlock-hardwood forest, Can. J. Bot. 61 (1983) 211–217.

    Article  Google Scholar 

  19. Elliot K.J., Boring L.R., Swank W.T., Haines B.R., Successional changes in plant species diversity and composition after clearcutting a Southern Appalachian watershed, For. Ecol. Man. 92 (1997) 67–85.

    Article  Google Scholar 

  20. Erdmann G.G., Betula alleghaniensis Britton, Yellow Birch, in: Silvics of North America: Hardwoods, USDA Forest service, Washington, USA, 1990, pp. 133–147.

    Google Scholar 

  21. Forcier L.K., Reproductive strategies and the co-occurrence of climax tree species, Science 189 (1975) 808–811.

    Article  PubMed  CAS  Google Scholar 

  22. Franklin J.F., Spies T.A., van PeltR., Carey A.B., Thornburgh D.A., Breg D.R., Lindenmaye D.B., Harmon M.E., Keeton W.S., Shaw D.C., Bible K., Chen J., Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155 (2002) 399–423.

    Article  Google Scholar 

  23. Givnish T.J., Adaptation to sun and shade: A whole plant perspective, Aust. J. Plant Physiol. 15 (1988) 63–92.

    Article  Google Scholar 

  24. Givnish T.J., Plant stem: Biochemical adaptation for energy capture and influence on species distributions, in: Plant stems: Physiology and functional morphology, Academic press, San Diego, USA, 1995, pp. 3–49.

    Google Scholar 

  25. Godman R.M., Yawney H.W., Tubbs C.H., Acer saccharum March, Sugar Maple, in: Silvics of North America: Hardwoods, USDA, Forest service, Washington, USA, 1990, pp. 78–91.

    Google Scholar 

  26. Godman R.M., Books D.J., Influence of stand density on stem quality in pole-size northern hardwoods, USDA, Forest Service, North Central Forest Experiment Station, St. Paul, MN, USA, Research Paper NC-54, 1971, 7 p.

    Google Scholar 

  27. Horn H.S., The ecology of secondary succession, Ann. Rev. Ecol. Syst. 5 (1974) 25–37.

    Article  Google Scholar 

  28. Kimmins J.P., Forest ecology: A foundation for sustainable management, 2nd ed., Prentice Hall Inc., New Jersey, USA, 1997, 596 p.

    Google Scholar 

  29. Kobe R.K., Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth, Oikos 80 (1997) 226–233.

    Article  Google Scholar 

  30. Kruger E.L., Reich P.B., Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status, Can. J. For. Res. 27 (1997) 1832–1840.

    Article  Google Scholar 

  31. Lei T.T., Lechowicz M.J., Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America, Oecologia 84 (1990) 224–228.

    Google Scholar 

  32. Levin S.A., The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture, Ecology 73 (1992) 1943–1967.

    Article  Google Scholar 

  33. McClure J.W., Lee T.D., Leak W.B., Gap capture in northern hardwoods: patterns of establishment and height growth in four species, For. Ecol. Manage. 127 (2000) 181–189.

    Article  Google Scholar 

  34. Merrens E.J., Peart D.R., Effects of hurricane damage on individual growth and stand structure in a hardwood forest in New Hampshire, USA, J. Ecol. 80 (1992) 787–795.

    Article  Google Scholar 

  35. Mladenoff D.J., He H.S., Design and behaviour of LANDIS, an object-oriented model of forest landscape disturbance and succession, in: Advances in spatial modeling of forest landscape change: approaches and applications, Cambridge University Press, Cambridge, UK, 1999, pp. 125–162.

    Google Scholar 

  36. MRN, Norme de cartographie écoforestière, Forêt Québec, Direction des inventaires forestiers, Troisième programme de connaissance de la ressource forestière, Édition provisoire, ISBN : 2-551-19159-2, 2000, 84 p.

  37. Niklas K.J., Plant biomechanics: An engineering approach to plant form and function, The University of Chicago Press, Chicago, USA, 1992, 607 p.

    Google Scholar 

  38. Nyland R.D., Ray D.G., Yanai R.D., Briggs R.D., Zhang L., Cymbala R.J., Twery M.J., Early cohort development following even-aged reproduction method cuttings in New York northern hardwoods, Can. J. For. Res. 30 (2000) 67–75.

    Article  Google Scholar 

  39. Perala D.A., Alm A.A., Reproductive ecology of birch: A review, For. Ecol. Manage. 32 (1990) 1–38.

    Article  Google Scholar 

  40. Perala D.A., Alm A.A., Regeneration silviculture of birch: A review, For. Ecol. Manage. 32 (1990) 39–77.

    Article  Google Scholar 

  41. Poulson T.L., Platt W.J., Replacement patterns of beech and sugar maple in Warren Woods, Michigan, Ecology 77 (1996) 1234–1253.

    Google Scholar 

  42. Robitaille A., Saucier J.-P, Paysages régionaux du Québec méridional, Les Publications du Québec, Québec, Canada, 1998, 213 p.

    Google Scholar 

  43. Runkle J.R., Gap regeneration in some old-growth forest of the eastern United States, Ecology 62 (1981) 1041–1051.

    Article  Google Scholar 

  44. Valladares F., Wright S.J., Lasso E., Kitajima K., Pearcy R.W., Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest, Ecology 81 (2000) 1925–1936.

    Article  Google Scholar 

  45. Vester H.F.M., Tree temperaments, in: Tyree M.T., Nardini A., Salleo S., Labrecque M., L’arbre 2000, The tree, Ed. Somabec, Ste-Hyacinthe Qc, Canada, 2001, pp. 25–30.

    Google Scholar 

  46. Walters M.B., Kruger EX., Reich P.B., Growth biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance, Oecologia 94 (1993) 7–16.

    Article  Google Scholar 

  47. Walters M.B., Reich P.B., Trade-offs in low light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings, Funct. Ecol. 14 (2000) 155–165.

    Article  Google Scholar 

  48. Whitney G.G., An ecological history of the great lakes forest of Michigan, J. Ecol. 75 (1987) 667–684.

    Article  Google Scholar 

  49. Whittaker R.J., Willis K.J., Field R., Scale and species richness: towards a general, hierarchical theory of species diversity, J. Biogeogr. 28 (2001) 453–470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Nolet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolet, P., Delagrange, S., Bouffard, D. et al. The successional status of sugar maple (Acer saccharum), revisited. Ann. For. Sci. 65, 208 (2008). https://doi.org/10.1051/forest:2007091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007091