Skip to main content
  • Original Article
  • Published:

Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain

Effets de chênes verts isolés sur les variations spatiales et temporelles de l’humidité du sol dans les dehesas du centre-ouest de l’Espagne

Abstract

The spatial and temporal evolution of soil water content (θ) in Quercus ilex dehesas has been investigated to determine how trees modify the soil water dynamics and the nature of tree-grass interactions in terms of soil water use in these ecosystems. Soil physical parameters and θ were measured at different distances from the tree trunk (2–30 m) in the upper 300 cm of soil. θ was measured monthly by TDR during 2002–2005. Tree water potential was determined during the summers of 2004 and 2005. At deeper soil layers, mean θ values were higher beyond than beneath tree canopy during dry periods. θ depletion beyond tree canopy continued even in summer, when herbaceous plants dried up, suggesting that trees uptake water from the whole inter-tree space. Results have shown a high dependence of trees on deep water reserves throughout late spring and summer, which helps to avoid competition for water with herbaceous vegetation.

Résumé

L’objectif de ce travail a été de déterminer les effets de chênes verts (Quercus ilex L.) isolés sur la teneur en eau du sol (θ) et la nature des interactions arbre-strate herbacée sous climat semi-aride, en terme d’utilisation de l’eau du sol dans ces écosystèmes. Les paramètres physiques du sol et θ ont été mesurés jusqu’ à 300 cm de profondeur et à différentes distances (2 à 30 m) autour des arbres. θ a été mesurée par TDR, mensuellement de 2002 à 2005 dans quatre dehesas. Le potentiel hydrique des arbres a été mesuré durant les étés 2004 et 2005. Essentiellement en profondeur et en été, les valeurs moyennes de θ furent plus élevées au-delà de la canopée que sous les arbres. La diminution de θ au-delà de la canopée des arbres a continué à diminuer encore en été lorsque les plantes herbacées étaient sèches, suggérant un prélèvement d’eau par les arbres. Nos résultats suggèrent alors que les arbres peuvent utiliser de l’eau localisée loin deux même à des distances de 20 m. et qu’ils sont très dépendants des réserves d’eau en profondeur (100–300 cm) pendant la fin du printemps et en été, ce qui contribue à diminuer la concurrence pour l’eau entre arbres et strate herbacée.

References

  1. Brady N.C., Weil R.R., Elements of the Nature and Properties of Soils, 2nd Ed. Prentice Hall, Upper Saddle River, New Jersey, 2004.

    Google Scholar 

  2. Canadell J., Zedler P.H., Woody-plant underground structures, in: Kalin Arroyo M., Zedler P.H, Fox M.D. (Eds.), Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia, Springer-Verlag, New York, 1995, pp. 177–210.

    Google Scholar 

  3. Canadell J., Jackson R.B., Ehleringer J.R., Mooney H.A., Sala O.E., Schulze E.-D., Maximum rooting depth of vegetation types at the global scale, Oecologia 108 (1996) 583–595.

    Article  Google Scholar 

  4. Cubera E., Montero M.J., Moreno G., Effect of land use on soil water dynamics in dehesas of Central-Western Spain, in: Schnabel S., Ferreira A. (Eds.), Advances in GeoEcology 37: Sustainability of Agrosilvopastoral systems — Dehesas, Montados —, Catena Verlag, Reiskirchen, 2004, pp. 109–123.

    Google Scholar 

  5. David T.S., Ferreira M.I., Cohen S., Pereira J.S., David J.S., Constraints on transpiration from an evergreen oak tree in southern Portugal, Agric. For. Meteorol. 122 (2004) 193–205.

    Article  Google Scholar 

  6. De Rosnay P., Polcher J., Modelling root water uptake in a complex land surface scheme coupled to a GCM, Hydrol. Earth Syst. Sc. 2 (1998) 239–255.

    Article  Google Scholar 

  7. Díaz M., Campos P., Pulido F.J., The Spanish dehesas: a diversity in land-use and wildlife, in: Pain D.J., Pienkowski M.W. (Eds.), Farming and birds in Europe. The Common Agricultural Policy and its Implications for Bird Conservation, Academic Press, London, 1997, pp. 178–209.

    Google Scholar 

  8. Eagleson P.S., Ecological optimality in water-limited natural soil-vegetation systems, I. Theory and hypothesis, Water Resour. Res. 18 (1982) 325–340.

    Article  Google Scholar 

  9. Eagleson P.S., Segarra R.I., Water-limited equilibrium of savanna vegetation systems, Water Resour. Res. 21 (1985) 1483–1493.

    Article  Google Scholar 

  10. Eastham J., Rose C.W., Cameron D.M., Rance S.J., Talsma T., Charles-Edwards D.A., Tree/pasture interactions at a range of tree densities in an agroforestry experiment. II. Water uptake in relation to rooting patterns, Aust. J. Agric. Res. 41 (1990) 697–707.

    Article  Google Scholar 

  11. Feddes R.A., Hoff H., Bruen M., Dawson T., de Rosnay P., Dirmeyer P., Jackson R.B., Rabat P., Kleidon A., Lilly A., Pitman A.J., Modeling Root Water Uptake in Hydrological and Climate Models, Bull. Am. Meteorol. Soc. 82 (2001) 2797–2809.

    Article  Google Scholar 

  12. Garnier F., Berger A., Rambal S., Water balance and pattern of soil water uptake in a peach orchard, Agric. Water Manage. 11 (1986) 145–158.

    Article  Google Scholar 

  13. Geiger S.C., Vandenbeldt R.J., Manu A., Variability in the growth of Faidherbia albida: the soils connection, Soil Sci. Soc. Am. J. 58 (1994) 227–231.

    Article  Google Scholar 

  14. Gómez-Gutierrez J.M., Pérez-Fernandez M., The dehesas, silvopastoral systems in semiarid Mediterranean regions with poor soils, seasonal climate and extensive utilisation, in: Etienne M. (Ed.), Western European Silvopastoral Systems, INRA Editions, Paris, 1996, pp. 55–70.

    Google Scholar 

  15. Hupet F., Lambot S., Feddes R.A., van Dam J.C., Vanclooster M., Estimation of root water uptake parameters by inverse modeling with soil water content data, Water Resour. Res. 39 (2003) 11.

    Article  Google Scholar 

  16. Infante J.M., Damesin C., Rambal S., Fernández-Alés R., Modelling leaf gas exchange in holm oak trees in southern Spain, Agric. For. Meteorol. 95 (1999) 203–223.

    Article  Google Scholar 

  17. Infante J.M., Domingo F., Fernández-Aléz R., Joffre R., Rambal S., Quercus ilex transpiration as affected by a prolonged drought period, Biol. Plant. 46 (2003) 49–55.

    Article  Google Scholar 

  18. ISSS-ISRIC-FAO, World Reference Base for Soil Resources. World Soil Resources, Reports No. 84. FAO UN, Rome, 1998.

    Google Scholar 

  19. Joffre R., Rambal S., Soil water improvement by trees in the range-lands of southern Spain, Oecol. Plant. 9 (1988) 405–422.

    Google Scholar 

  20. Joffre R., Rambal S., How tree cover influences the water balance of Mediterranean rangelands, Ecology 74 (1993) 570–582.

    Article  Google Scholar 

  21. Joffre R., Leiva Morales M.J., Rambal S., Fernández Alés R., Dynamique racinaire et extraction de l’eau du sol par des graminées pérennes et annuelles méditerranéennes, Acta Oecol. Oecol. Plant. 8 (1987) 181–194.

    Google Scholar 

  22. Joffre R., Rambal S., Ratte J.P., The dehesa system of southern Spain and Portugal as a natural ecosystem mimic, Agrofor. Syst. 45 (1999) 57–79.

    Article  Google Scholar 

  23. Jose S., Gillespie A.R., Seifert J.R., Biehle D.J., Defining competition vectors in temperate alley cropping system in the midwestern USA: 2. Competition for water, Agrofor. Syst. 48 (2000) 41–59.

    Article  Google Scholar 

  24. Marañón T., Plant species richness and canopy effect in the savanna-like “dehesa” of SW-Spain, Ecol. Mediter. 12 (1986) 131–141.

    Google Scholar 

  25. Martínez-Vilalta J., Prat E., Oliveras I., Piñol J., Hydraulic properties of roots and stems of nine woody species from a holm oak forest in NE Spain, Oecologia 133 (2002) 19–29.

    Article  Google Scholar 

  26. Mateos B., Schnabel S., Rainfall interception by holm oaks in Mediterranean open woodland, in: Garcia-Ruiz J.M., Jones J.A.A., Arnaez J. (Eds.), Environmental change and water sustainability, Consejo Superior de Investigaciones Científicas and the University of La Rioja Press, Spain, 2002, pp. 31–42.

    Google Scholar 

  27. McPherson G.R., Ecology and Management of North American Savannas, University of Arizona Press, Tucson, 1997.

    Google Scholar 

  28. Montero M.J., Obrador J.J., Cubera E., Moreno G., The role of Dehesa land use on tree water status in Central-Western Spain, in: Schnabel S., Ferreira A. (Eds.), Advances in Geoecology 37: Sustainability of agrosilvopastoral systems-dehesas, Montados-, Catena Verlag, Reiskirchen, Germany, 2004, pp. 125–136.

    Google Scholar 

  29. Moreno G., Obrador J.J., Cubera E., Dupraz C., Fine root distribution in dehesas of central-western Spain, Plant Soil 277 (2005) 153–162.

    Article  CAS  Google Scholar 

  30. Nunes J., Madeira M., Gazarini L., Some ecological impacts of Quercus rotundifolia trees on the understorey environment in the “montado” agrosilvopastoral system, Southern Portugal, in: Mosquera-Losada M.R., Riguero-Rodriguez A., McAdam J. (Eds.), Silvopastoralism and sustainable land management, CAB International, Oxfordshire, 2005, pp. 275–277.

    Chapter  Google Scholar 

  31. Passioura J.B., Water in the soil-plant-atmosphere continuum, in: Lange O.L, Nobel P.S., Osmond C.B., Zigler H. (Eds.), Physiology Plant Ecology, II, Springer-Verlag, New York, 1982, pp. 5–33.

    Google Scholar 

  32. Peñuelas J., Lloret F., Montoya R., Severe drought effects on Mediterranean woody flora in Spain, For. Sci. 47 (2001) 214–218.

    Google Scholar 

  33. Pérez-Corona M.E., García-Ciudad A., García-Criado B., Vâzquez-Aldana B., Patterns of aboveground herbage production and nutritional quality structure on semiarid grasslands, Commun. Soil Sci. Plant Anal. 26 (1995) 1323–1341.

    Article  Google Scholar 

  34. Puerto A., Rico M., Influence of tree canopy (Quercus rotundifolia Lam.) on content in surface soil water in Mediterranean grasslands, Ecology (CSSR) 8 (1989) 225–238.

    Google Scholar 

  35. Rambal S., Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub, Oecologia 62 (1984) 18–25.

    Article  Google Scholar 

  36. Rambal S., The differential role of mechanisms for drought resistance in a Mediterranean evergreen shrub: a simulation approach, Plant Cell Environ. 16 (1993) 35–44.

    Article  Google Scholar 

  37. Reicosky D.C., Millington R.J., Kute A., Peters D.B., Patterns of water uptake and root distribution of soybeans (Glycine max) in the presence of a water table, Agron. J. 64 (1964) 292–297.

    Article  Google Scholar 

  38. Sala A., Modelling canopy gas exchange during summer drought, in: Rodá F., Retana J., Gracia C.A, Bellot J. (Eds.), Ecological Studies vol. 137, Ecology of Mediterranean evergreen oak forests, Springer, Berlin, 1999, pp. 149–159.

    Google Scholar 

  39. Sala A., Tenhunen J.D., Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed, Tree Physiol. 14 (1994) 601–617.

    PubMed  Google Scholar 

  40. Savé R., Castell C., Terradas J., Gas exchange and water relations, in: Roda F., Retana J., Gracia C.A, Bellot J. (Eds.), Ecological Studies vol. 137, Ecology of Mediterranean evergreen oak forests, Springer, Berlin, 1999, pp. 135–144.

    Google Scholar 

  41. Schenk H.J., Jackson R.B., Rooting depths, lateral rood spreads and below-ground/above-ground allometries of plants in water-limited ecosystems, J. Ecol. 90 (2002) 480–494.

    Article  Google Scholar 

  42. Scholes R.J., Archer S.R., Tree-grass interactions in savannas, Annu. Rev. Ecol. Syst. 28 (1997) 517–544.

    Article  Google Scholar 

  43. Thornthwaite C.W., An approach towards a rational classification of climate, Geogr. Rev. 38 (1948) 55–89.

    Article  Google Scholar 

  44. Van Wijk M.T., Bouten W., Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution, Hydrol. Earth Syst. Sc. 5 (2001) 629–644.

    Article  Google Scholar 

  45. Vicente M.A., Gallardo J.F., Moreno G., González M.I., Comparison of soil water-contents as measured with a neutron probe and Time Domain Reflectometry in a Mediterranean forest (‘Sierra de Gata’, Central Western Spain), Ann. For. Sci. 60 (2003) 185–193.

    Article  Google Scholar 

  46. Vinckle C., Granier A., Breda N., Devillez F., Evapotranspiration of a declining Quercus robur (L.) stand from 1990 to 2001. II. Daily actual evapotranspiration and soil water reserve, Ann. For. Sci. 62 (2005) 615–623.

    Article  Google Scholar 

  47. Vrugt J.A., Hopmans J.W., Simunek J., Calibration of a two dimensional root water uptake model for a sprinkler-irrigated almond tree, Soil Sci. Soc. Am. J. 65 (2001) 1027–1037.

    Article  CAS  Google Scholar 

  48. Young A., Agroforestry for Soil Management, CAB International, Wallingford, UK, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubera, E., Moreno, G. Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Ann. For. Sci. 64, 355–364 (2007). https://doi.org/10.1051/forest:2007012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007012