Skip to main content

Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species

Thigmomorphogénèse et effet de la lumière dans les stratégies biomécaniques de croissance de jeunes arbres de deux espèces de forêt tropicale humide

Abstract

  • • In the dense tropical rainforest understorey, saplings exhibit different growth strategies aiming at reaching light levels better fitting their ecology. Investing mainly in height growth, at the expense of their width, a lot are close to mechanical instability. Tachigali melinonii, a long living heliophilic tree species, is frequently observed to be extremely slender and supported by neighbours. Such observations suggest an active growth control through the perception of mechanical environment.

  • • Mechanical environment or light availability, which one is the most influent on growth and slenderness (H/D)? To test this question, we recorded growth of control and staked saplings of two species with contrasting habits and ecology: T. melinonii, and Dicorynia guianensis, along a natural light gradient.

  • Dicorynia, the more stable, responded more clearly to the staking treatment, showing slenderness increase when light is available, whereas for Tachigali, only light availability governed growth.

  • • For Tachigali, growth allocation is mainly governed by light availability and ontogeny, whereas Dicorynia is probably similar to the average tree strategy, using the thigmomorphogenetic physiological process to control its stability.

Résumé

  • • Dans le sous-bois dense tropical humide, les jeunes arbres développent différentes stratégies de croissance pour atteindre des niveaux de lumière mieux adaptés à leur écologie. En investissant massivement dans la croissance en hauteur aux dépens de leur épaisseur, beaucoup sont proches de la non-autoportance. Tachigali melinonii, héliophile à vie longue, est fréquemment observée extrêmement élancée, supportée par ses voisins. Ceci suggère un contrôle actif de la croissance par la perception de l’environnement mécanique.

  • • Qui, de l’environnement mécanique ou de la disponibilité de la lumière influence le plus la croissance et l’élancement? Nous avons observé la croissance de jeunes T. melinonii et Dicorynia guianensis (plus sciaphile), tuteurés ou non, le long d’un gradient naturel de lumière.

  • Dicorynia, mécaniquement plus stable, est plus réactive aux tuteurs, investissant la biomasse produite dans la croissance en hauteur. La croissance en hauteur de Tachigali est uniquement gouvernée par la lumière disponible.

  • • Pour Tachigali, la disponibilité de la lumière et le stade ontogénique gouvernent principalement l’allocation de croissance. Dicorynia, comme probablement beaucoup d’espèces, utilise la thigmomorphogénèse pour contrôler sa stabilité.

References

  • Baraloto C., Goldberg D.E., and Bonal D., 2005. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 86: 2461–2472.

    Article  Google Scholar 

  • Biddington N.L., 1986. The effects of mechanically-induced stress in plants — a review. Plant Growth Regul. 4: 103–123.

    Article  CAS  Google Scholar 

  • Boyer N., 1967. Modifications de la croissance de la tige de Bryone (Bryonia dioica) à la suite d’irritations tactiles. C. R. Acad. Sci. 264: 2114–2117.

    Google Scholar 

  • Brokaw N.V.L., 1985. Gap-phase regeneration in a tropical forest. Ecology 66: 682–687.

    Article  Google Scholar 

  • Chazdon R.L. and Fetcher N., 1984. Light environments of tropical forests. In: Medina E., Mooney H.A., and Vazquez-Yanes C. (Eds.), Physiological ecology of plants of the wet tropics, Junk, The Hague, Netherlands, pp. 27–36.

    Google Scholar 

  • Coomes D.A. and Grubb P.J., 1998. Responses of juvenile trees to above- and beloweground competition in nutrient-starved amazonian rain forest. Ecology 79: 768–782.

    Article  Google Scholar 

  • Coutand C., Moulia B., Frizot N., Mauget J.C., and Julien J.-L., 1997. An experimental method for quantitative characterization of plant thigmomorphogenesis. In: Jeronimidis G. and Vincent J.F.V. (Eds.), Plant biomechanics, Centre for Biomimetics, Reading.

    Google Scholar 

  • Dawkins H.C., 1958. The management of natural tropical highforests with special reference to Uganda. Imperial Forestry Institute, University of Oxford, 155 p.

  • Favrichon V., 1994. Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d’un modèle de dynamique de peuplement en forêt guyanaise. Terre Vie-Rev. Ecol. A 49: 379–403.

    Google Scholar 

  • Favrichon V., 1995. Modèle matriciel déterministe en temps discret: application à l’étude de la dynamique d’un peuplement forestier tropical humide (Guyane française). Thèse, Université Claude Bernard Lyon 1, France, 252 p.

    Google Scholar 

  • Flores O., Gourlet-Fleury S., and Picard N., 2006. Local disturbance, forest structure and dispersal effects on sapling distribution of light-demanding and shade-tolerant species in a French Guianian forest. Acta Oecol. 29: 141–154.

    Article  Google Scholar 

  • Gallenmüller F., Rowe N.P., and Speck T., 2004. Development and growth form of the neotropical liana Croton nuntians: the effect of light and mode of attachment on the biomechanics of the stem. J. Plant Growth Regul. 23: 83–97.

    Article  Google Scholar 

  • Gourlet-Fleury S., 2002. Régénération de l’Angélique (Dicorynia guianensis Amshoff., Caesalpiniaceae) en Guyane française. Rapport final projet Ecofor : Étude qualitative et quantitative du déterminisme de la reproduction, de l’installation et du développement des nouveaux individus dans le peuplement. Cirad, 60 p.

  • Gourlet-Fleury S., Guehl J.-M., and Laroussinie O., 2004. Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, Paris, France, 350 p.

  • Holbrook M.N. and Putz F.E., 1989. Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am. J. Bot. 76: 1740–1749.

    Article  Google Scholar 

  • Jaffe M.J., Leopold A.C., and Staples R.C., 2002. Thigmo responses in plants and fungi. Am. J. Bot. 89: 375–382.

    Article  PubMed  Google Scholar 

  • Jaouen G., 2007. Étude des stratégies biomécaniques de croissance des jeunes arbres en peuplement hétérogène tropical humide. Biologie végétale et forestière, Thèse, Université Henri Poincaré, Nancy I, France, 217 p.

    Google Scholar 

  • Jaouen G., Alméras T., Coutand C., and Fournier M., 2007. How to determine sapling buckling risk with only a few measurements. Am. J. Bot. 94: 1583–1593.

    Article  PubMed  Google Scholar 

  • King D.A., 1990. Allometry of saplings and understory trees of a panamanian forest. Funct. Ecol. 4: 27–32.

    Article  Google Scholar 

  • Larson P.R., 1963. Stem form development of forest trees. For. Sci. Monogr. 5: 1–42.

    Google Scholar 

  • Mattheck C., 1990. Engineering Components grow like trees. Materialwiss, Werkst. 21: 143–168.

    Article  Google Scholar 

  • Messier C. and Nikinmaa E., 2000. Effects of light availability and sapling size on the growth, biomass allocation, and crown morphology of understory sugar maple, yellow birch, and beech. Ecoscience 7: 345–356.

    Google Scholar 

  • Moulia B., Coutand C., and Lenne C., 2006. Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am. J. Bot. 93: 1477–1489.

    Article  PubMed  Google Scholar 

  • Oldeman R.A.A. and Van Dijk J., 1991. Diagnosis of the temperament of tropical rain forest trees. In: Gomez-Pompa A., Whitmore T.C., and Hadley M. (Eds.), Rain forest regeneration and management, UNESCO and The Parthenon publishing group, Paris, France, pp. 21–65.

    Google Scholar 

  • Pappas T. and Mitchell C.A., 1982. Mechanical stress regulation of growth and photosynthetic productivity of Glycine max/L./Merr. cv Wells II under different environmental regimes (soybean plant growth retardation by shaking and rubbing). Physiologist 25: S135-S136.

    Google Scholar 

  • Poorter L., 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct. Ecol. 15: 113–123.

    Article  Google Scholar 

  • Rijkers T., Pons T.L., and Bongers F., 2000. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 14: 77–86.

    Article  Google Scholar 

  • Rowe N.P. and Speck T., 1998. Biomechanics of plant growth forms: the trouble with fossil plants. Rev. Palaeobot. Palynol. 102: 43–62.

    Article  Google Scholar 

  • Rowe N.P. and Speck T., 2005. Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166: 61–72.

    Article  PubMed  Google Scholar 

  • Rowe N.P., Isnard S., Gallenmüller F., and Speck T., 2006. Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A., Speck T., and Rowe N.P. (Eds.), Ecology and biomechanics. A mechanical approach to the ecology of animals and plants, Taylor and Francis, CRC Press.

    Google Scholar 

  • Schnitzer S.A. and Carson W.P., 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82: 913–919.

    Article  Google Scholar 

  • Schnitzer S.A. and Bongers F., 2002. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17: 223–230.

    Article  Google Scholar 

  • Sterck F.J. and Bongers F., 1998. Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am. J. Bot. 85: 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer P.J., Sterck F.J., and Bongers F., 1998. Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana. J. Trop. Ecol. 14: 119–137.

    Article  Google Scholar 

  • van Gelder H.A., Poorter L., and Sterck F.J., 2006. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol. 171: 367–378.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Jaouen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaouen, G., Fournier, M. & Almeras, T. Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species. Ann. For. Sci. 67, 211 (2010). https://doi.org/10.1051/forest/2009104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009104

Keywords

Mots-clés