Skip to main content
  • Original Article
  • Published:

Forest floor contribution to phosphorus nutrition: experimental data

Contribution des couches holorganiques à la nutrition en phosphore : données expérimentales

Abstract

  • • Although accumulation of decomposing litter temporarily removes nutrients from active circulation, it creates a medium that is more suitable for nutrient uptake where soil conditions are unfavorable.

  • • A pot experiment was conducted using labeling of isotopically exchangeable phosphate ions of the soil and applying the dilution principle to accurately assess the contribution of the forest floor to P nutrition of maritime pine seedlings (Pinus pinaster Aït.). Three-week-old maritime pine seedlings were planted in pots containing either mineral soil (MS) or mineral soil covered with a forest floor layer (MS+FF).

  • • After 130 d, P uptake was still insignificant in the MS treatment while the P content of the seedlings in the MS+FF treatment increased tenfold with respect to the initial P content. In the latter treatment, the forest floor contributed 99.1% of the P supply to pine seedlings.

  • • The higher P uptake from the forest floor than from the mineral soil may be explained by its lower ability to retain inorganic P, which enabled a higher concentration of inorganic P to be maintained in solution.

Résumé

  • • Bien que l’accumulation de litière en décomposition immobilise temporairement une partie des nutriments, elle crée un espace propice au prélèvement des nutriments là où le sol minéral est peu favorable.

  • • La contribution des couches holorganiques à la nutrition en P de semis de pin maritime (Pinus pinaster Aït.) a été estimée sur base d’une expérience en pots combinée à un marquage des ions phosphate du sol minéral. Des semis de trois semaines ont été plantés dans des pots contenant soit uniquement du sol minéral (MS) ou soit du sol minéral recouvert par une couche de litière (MS+FF).

  • • Après 130 jours, le prélèvement en P était toujours insignifiant dans le traitement MS alors que le contenu en P des semis du traitement MS+FF avait été décuplé par rapport au contenu initial. Dans ce traitement, la contribution des couches holorganiques à l’alimentation en phosphore des semis était de 99,1 %.

  • • Le prélèvement en P plus important à partir des couches holorganiques peut être expliqué par leur faible capacité de rétention du P qui permet de maintenir une forte concentration en P dans la solution du sol.

References

  • Achat D.L., 2009. Biodisponibilité du phosphore dans les sols landais pour les peuplements forestiers de pin maritime. Ph.D. thesis, Université de Bordeaux 1, Bordeaux, France, 291 p.

    Google Scholar 

  • Achat D.L., Bakker M.R., Augusto L., Saur E., and Morel C., 2009. Evaluation of the phosphorus status of highly P-deficient spodosols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry (in press).

  • Attiwill P.M. and Adams M.A., 1993. Tansley review No. 50. Nutrient cycling in forests. New Phytol. 124: 561–582.

    Article  CAS  Google Scholar 

  • Augusto L., Badeau V., Arrouays D., Trichet P., Flot J.L., Jolivet C., and Merzeau D., 2006. Caractérisation physico-chimique des sols à l’échelle d’une région naturelle à partir d’une compilation de données. Exemple des sols du massif forestier landais. Etude et Gestion des Sols 13: 7–22.

    Google Scholar 

  • Bakker M.R., Augusto L., and Achat D.L., 2006. Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286: 37–51.

    Article  CAS  Google Scholar 

  • Bakker M.R., Jolicoeur E., Trichet P., Augusto L., Plassard C., Guinberteau J., and Loustau D., 2009. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol. (in press).

  • Barber S.A., 1995. Soil Nutrient Bioavailability: A Mechanistic approach, John Wiley & Sons, New York, 398 p.

    Google Scholar 

  • Berg B. and McClaugherty C., 2003. Plant litter: decomposition, humus formation, carbon sequestration, Springer-Verlag, Berlin, Germany, 286 p.

    Google Scholar 

  • Black C.H., 1988. Interaction of phosphorus fertilizer form and soil medium on Douglas-fir seedling phosphorus content, growth and photosynthesis. Plant Soil 106: 191–199.

    Article  CAS  Google Scholar 

  • Brandtberg P.O., Bengtsson J., and Lundkvist H., 2004. Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. For. Ecol. Manage. 198: 193–208.

    Article  Google Scholar 

  • Carey M.L., Hunter I.R., and Andrew I., 1982. Pinus radiata forest floors: factors affecting organic matter and nutrient dynamics. N. Z. J. For. Sci. 12: 36–48.

    CAS  Google Scholar 

  • Chapin F.S., 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.

    Article  CAS  Google Scholar 

  • Cheaib A., Mollier A., Thunot S., Lambrot C., Pellerin S., and Loustau D., 2005. Interactive effects of phosphorus and light availability in early growth of maritime pine seedlings. Ann. For. Sci. 62: 575–583.

    Article  Google Scholar 

  • Compton J.E. and Cole D.W., 1998. Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands. For. Ecol. Manage. 110: 101–112.

    Article  Google Scholar 

  • Di H.J., Condron L.M., and Frossard E., 1997. Isotope techniques to study phosphorus cycling in agricultural and forest soils: a review. Biol. Fertil. Soils 24: 1–12.

    Article  CAS  Google Scholar 

  • Fardeau J.C., 1993. Le phosphore biodisponible du sol. Un système pluri-compartimental à structure mamellaire. Agronomie 1: 1–13.

    Google Scholar 

  • Fardeau J.C., 1996. Dynamics of phosphate in soils. An isotopic outlook. Fert. Res. 45: 91–100.

    Article  Google Scholar 

  • Fisher R.F. and Binkley D., 2000 Ecology and management of forest soils, 3rd ed., John Wiley & Sons, Inc., USA, 489 p.

    Google Scholar 

  • Frossard E. and Sinaj S., 1997. The isotope exchange kinetics technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isot. Environ. Health. Stud. 33: 61–77.

    Article  CAS  Google Scholar 

  • Jackson R.B., Canadell J., Ehleringer J.R., Mooney H.A., Sala O.A., and Schulze E.D., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411.

    Article  Google Scholar 

  • Jonard M., Misson L., and Ponette Q., 2006. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can. J. For. Res. 36: 2684–2695.

    Article  CAS  Google Scholar 

  • Hallsby G., 1995. Influence of Norway spruce seedlings on the nutrient availability in mineral soil and forest floor material. Plant Soil 173: 39–45.

    Article  CAS  Google Scholar 

  • Hamon R.E., Bertrand I., and McLaughlin M.J., 2002. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40: 1371- 1381.

    Article  CAS  Google Scholar 

  • Kimmins J.P., 1997. Forest ecology: a foundation for sustainable forest management, 2nd ed., Prentice and Hall, Upper Saddle River, New Jersey, 596 p.

    Google Scholar 

  • Leuschner C., 1998. Water extraction by tree fine roots in the forest floor of a temperate Fagus-Quercus forest. Ann. Sci. For. 55: 141–157.

    Article  Google Scholar 

  • Loustau D., Ben Brahim M., Gaudillère J.P., and Dreyer E., 1999. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19: 707–715.

    PubMed  Google Scholar 

  • Merino A., Real C., and Rodriguez-Guitian M., 2008. Nutrient status of managed and natural forest fragments of Fagus sylvatica in southern Europe. For. Ecol. Manage. 255: 3691–3699.

    Article  Google Scholar 

  • Morel C. and Plenchette C., 1994. Is the isotopically exchangeable phosphate of a loamy soil the plant-available P? Plant Soil 158: 287–297.

    Article  CAS  Google Scholar 

  • Morel C., Tiessen H., and Stewart J.W.B., 1996. Correction for P-sorption in the measurement of soil microbial biomass by CHCl3 fumigation. Soil Biol. Biochem. 28: 1699–1706.

    Article  CAS  Google Scholar 

  • Morel C., Tunney H., Plénet D., and Pellerin S., 2000. Transfer of phosphate ions between soil and solution. Perspectives in soil testing. J. Environ. Qual. 29: 50–59.

    Article  CAS  Google Scholar 

  • Northup R.R., Dahlgren R.A., and Yu Z., 1995. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171: 255–262.

    Article  CAS  Google Scholar 

  • Paré D. and Bernier B., 1989. Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Can. J. For. Res. 19: 24–34.

    Article  Google Scholar 

  • Polglase P.J., Attiwill P.M., and Adams M.A., 1992. Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell. III. Labile inorganic and organic P, phosphatase activity and P availability. Plant Soil 142: 177–185.

    Article  CAS  Google Scholar 

  • Read D.J. and Boyd R., 1986. Water relations of mycorrhizal fungi and their host plants. In: Ayres P. and Boddy L. (Eds.), Water, fungi and plants, Cambridge University Press, Cambridge, pp. 287–303.

    Google Scholar 

  • Rousseau J.V.D., Sylvia D.M., and Fox A.J., 1994. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128: 639–644.

    Article  Google Scholar 

  • Saunders W.M.H. and Williams E.G., 1955. Observations on the determination of total organic phosphorus in soils. J. Soil Sci. 6: 254–267.

    Article  CAS  Google Scholar 

  • Saur E., 1989. Effet de l’apport de phosphore, de carbonate de calcium et d’oligo-éléments (Cu, Mn, Zn, B) à trois sols sableux acides sur la croissance et la nutrition de semis de Pinus pinaster Soland in Ait. I. Croissance et nutrition en éléments majeurs. Agronomie 9: 931–940.

    Article  Google Scholar 

  • Stevenson F.J. and Cole M.A., 1999. Cycles of soil, 2nd ed., John Wiley & Sons, USA, 637 p.

    Google Scholar 

  • Stroia C., Jouany C., and Morel C., 2007. Effect of pooling soil samples on the diffusive dynamics of phosphate ionic species. Soil Sci. 172: 614–622.

    Article  CAS  Google Scholar 

  • Tennant D., 1975. A test of a modified line intersect method of estimating root length. J. Ecol. 63: 995–1001.

    Article  Google Scholar 

  • Trichet P., Jolivet C.I., Arrouays D., Loustau D., Bert D., and Ranger J., 1999. Le maintien de la fertilité des sols forestiers landais dans le cadre de la sylviculture intensive du pin maritime. Revue bibliographique et identification des pistes de recherches. Étude et Gestion des Sols 6: 197–214.

    Google Scholar 

  • Trichet P., Vauchel F., Bert D., and Bonneau M., 2000. Fertilisation initiale et réitérée du pin maritime (Pinus pinaster Aït.): principaux résultats de l’essai de Berganton. Rev. For. Fr. 52: 207–222.

    Article  Google Scholar 

  • Trichet P., Loustau D., Lambrot C., and Linder S., 2008. Manipulating nutrient and water availability in a maritime pine plantation: effects on growth, production, and biomass allocation at canopy closure. Ann. For. Sci. 65: 814.

    Article  Google Scholar 

  • Van Veldhoven P.V. and Mannaerts G.P., 1987. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161: 45–48.

    Article  PubMed  Google Scholar 

  • Walbridge M.R. and Vitousek P.M., 1987. Phosphorus mineralization potentials in acid organic soils: processes affecting 32PO 3−4 isotope dilution measurements. Soil Biol. Biochem. 19: 709–717.

    Article  Google Scholar 

  • Wallander H., Nilsson L.O., Hagerberg D., and Baath E., 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151: 753–760.

    Article  CAS  Google Scholar 

  • Wallander H., Goransson H., and Rosengren U., 2004. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89–97.

    Article  PubMed  Google Scholar 

  • Wood T., Bormann F.H., and Voigt G.K., 1984. Phosphorus cycling in a northern hardwood forest: biological and chemical control. Science 233: 391–393.

    Article  Google Scholar 

  • Yanai R.D., 1994. A steady-state model of nutrient uptake accounting for newly grown roots. Soil Sci. Soc. Am. J. 58: 1562–1571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Jonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonard, M., Augusto, L., Morel, C. et al. Forest floor contribution to phosphorus nutrition: experimental data. Ann. For. Sci. 66, 510 (2009). https://doi.org/10.1051/forest/2009039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009039

Keywords

Mots-clés