Skip to main content
  • Original Article
  • Published:

Combining forest structure data and fuel modelling to classify fire hazard in Portugal

Combinaison des données de structure forestière et de modélisation de la disponibilité en combustible pour classer les risques d’incendie de forêt au Portugal

Abstract

  • • Fire management activities can greatly benefit from the description of wildland fuel to assess fire hazard.

  • • A forest typology developed from the Portuguese National Forest Inventory that combines cover type (the dominant overstorey species) and forest structure defined as a combination of generic stand density (closed or open) and height (low or tall) is translated into fuel models. Fire behaviour simulations that accounted for the fire environment modification induced by stand structure resulted in an objective and quantitative assessment of fire hazard for 19 forest types.

  • • The range of fire risk is similar between and within cover types. Stand structure, rather than cover type, is the major determinant of fire vulnerability. This indicates a potentially prominent role of stand and fuel management in wildfire mitigation. Four fire hazard groups are defined: (1) open and tall forest types, and closed and tall Quercus suber and diverse forests; (2) closed, low woodlands of deciduous oaks, Q. suber and diverse forests, closed and tall Pinus pinaster woodland and tall Eucalyptus globulus plantations; (3) open and low forest types; (4) dense low stands of P. pinaster, E. globulus and Acacia. Potential fire risk increases from (1) to (4).

Résumé

  • • Les activités de gestion des risques d’incendie peuvent grandement bénéficier de la description du combustible forestier.

  • • Une typologie forestière développée à partir de l’Inventaire Forestier National Portugais combinant type de couvert (espèces de l’étage dominant) et structure de la forêt définie comme une combinaison de la densité générique du peuplement (fermé ou ouvert) et de la hauteur (haute ou basse) est traduite en modèles de disponibilité en combustible. Les simulations de comportement du feu prenant en compte les modifications induites par la structure des peuplements ont abouti à une évaluation objective et quantitative des risques d’incendie pour 19 types de forêts.

  • • La gamme de risques d’incendie est similaire entre et dans les types de couvert. La structure des peuplements, plutôt que le type de couvert, est le principal déterminant de la vulnérabilité à l’incendie, ce qui indique un rôle potentiellement important de la gestion des peuplements et du combustible dans la lutte contre les feux de forêts. Quatre groupes de risque d’incendie sont distingués : (1) forêts hautes et ouvertes, et couverts fermés et hauts de Quercus suber; (2) peuplements bas et fermés de chênes décidus, de Q. suber et de diverses essences, grands bois fermés de Pinus pinaster et plantations de grands Eucalyptus globulus; (3) forêts ouvertes et basses ; (4) peuplements bas et denses de P. pinaster, E. globulus et Acacia. risque potentiel d’incendie s’accroît de (1) à (4).

References

  • Agee J.K. and Skinner C., 2005. Basic principles of forest fuel reduction treatments. For. Ecol. Manage. 211: 83–96.

    Article  Google Scholar 

  • Alexander M., 2007. Simple question; difficult answer: how much fuel is acceptable? Fire Management Today 67: 6–11.

    Google Scholar 

  • Allgöwer B., Harvey S., and Rüegsegger M., 1998. Fuel models for Switzerland: description, spatial pattern, index for torching and crowning. In: Viegas D.X. (Ed.), Proc. 3rd International Conference on Forest Fire Research & 14th Fire and Forest Meteorology Conference, ADAI, Coimbra, pp. 2605–2620.

    Google Scholar 

  • Allgöwer B., Calogine D., Camia A., Cuiñas P., Fernandes P., Francesetti A., Hernando C., Kötz B., Koutsias N., Lindberg H., Molina D., Morsdorf F., Ribeiro L., Rigolot E., and Séro-Guillaume O., 2004. Methods for wildland fuel description and modeling: a state of the art, Deliverable D-02-01, EUFIRELAB: Euro-Mediterranean Wildland Fire Laboratory, a “wall-less” Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region, Contract No. EVR1-CT-2002-40028.

  • Anderson H.E., 1982. Aids to determining fuel models for estimating fire behaviour, USDA Forest Service, Ogden, 22 p.

    Google Scholar 

  • Andrews P., Bevins C., and Seli R., 2005. BehavePlus Fire Modeling System, version 3.0: user’s guide, USDA Forest Service, Ogden, 134 p.

    Google Scholar 

  • Bachmann A. and Allgöwer B., 2000. The need for a consistent wildfire risk terminology. In: Gollberg G.E. (Ed.), Crossing the millenium: integrating spatial technologies and ecological principles for a new age in fire management, University of Idaho and International Association of Wildland Fire, Boise, pp. 67–77.

    Google Scholar 

  • Brown J.K., 1981. Bulk densities of nonuniform surface fuels and their application to fire modeling. For. Sci. 27: 667–683.

    Article  Google Scholar 

  • Burgan R. and Rothermel R., 1984. BEHAVE: fire behavior prediction and fuel modeling system — FUEL subsystem, USDA Forest Service, Ogden, 137p.

    Google Scholar 

  • Byram G.M., 1959. Combustion of forest fuels. In: Davis K.P. (Ed.), Forest fire: control and use, McGraw-Hill, New York, pp. 90–123.

    Google Scholar 

  • Castro F.X., Tudela A., Gabriel E., Montserrat D., Canyameros E., and Segarra M., 2006. Evolution of live fuel moisture in Mediterranean forests. In: Viegas D.X. (Ed.), Proceedings V International Conference on Forest Fire Research, Elsevier B.V., CDROM, Amsterdam.

    Google Scholar 

  • Choung Y., Lee B., Cho J., Lee K., Jang I., Kim S., Hong S., Jung H., and Choung H., 2004. Forest responses to the large-scale east coast fires in Korea. Ecol. Res. 19: 43–54.

    Article  Google Scholar 

  • Cohen M., Cuiñas P., Diez C., Fernandes P., Guijarro M., and Moro C., 2003. Wildland fuel particles characterization database content, Deliverable D6-03-A1, Fire Star: a decision support system for fuel management and fire hazard reduction in Mediterranean wildland — urban interfaces, Contract No. EVG1-CT-2001-00041.

  • Countryman C., 1974. Can Southern California Wildland Conflagrations be Stopped? USDA Forest Service, Berkeley, 11 p.

    Google Scholar 

  • Cruz M.G., 2005. Guia fotográfico para identificação de combustíveis florestais — região Centro de Portugal, CEIF, ADAI, Coimbra. 26p.

    Google Scholar 

  • Cruz M.G., Alexander M.E., and Wakimoto R.H., 2003. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildl. Fire 12: 39–50.

    Article  Google Scholar 

  • Cruz M.G. and Fernandes P.M., 2008. Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait.) stands. Int. J. Wildl. Fire 17: 194–204.

    Article  Google Scholar 

  • Cumming S.G., 2001. Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol. Appl. 11: 97–110.

    Article  Google Scholar 

  • DGF, 2001. Inventário Florestal Nacional: Portugal Continental 3a revisão, DGF, Lisboa.

    Google Scholar 

  • DGRF, 2006. Incêndios florestais, relatório de 2005, Divisão de Defesa da Floresta Contra Incêndios, DGRF, Lisboa.

    Google Scholar 

  • Dimitrakopoulos A.P., 2002. Mediterranean fuel models and potential fire behaviour in Greece. Int. J. Wildl. Fire 11: 127–130.

    Article  Google Scholar 

  • Fernandes P.M. and Botelho H.S., 2003. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildl. Fire 12: 117–128.

    Article  Google Scholar 

  • Fernandes P.M. and Botelho H.S., 2004. Analysis of the prescribed burning practice in the pine forest of northwestern Portugal. J. Env. Manage. 70: 15–26.

    Article  CAS  Google Scholar 

  • Fernandes P.M. and Rigolot E., 2007. Fire ecology and management of maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 241: 1–13.

    Article  Google Scholar 

  • Finney M., 1998. FARSITE: Fire Area Simulator — model development and evaluation. USDA Forest Service, Ogden, 47 p.

    Google Scholar 

  • Godinho-Ferreira P., Azevedo A., and Rego F., 2005. Carta da tipologia florestal de Portugal Continental. Silva Lusitana 13: 1–34.

    Google Scholar 

  • Godinho-Ferreira P., Azevedo A., Vaz P., and Rego F., 2006. Composition, configuration and vertical structure of Portuguese forests: implications in wildfire probability. In: Viegas D.X. (Ed.), Proceedings V International Conference on Forest Fire Research, Elsevier B.V., Amsterdam, CD-ROM.

    Google Scholar 

  • González J.R., Palahí M., Trasobares A., and Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 63: 169–176.

    Article  Google Scholar 

  • González J.R., Trasobares A., Palahí M., and Pukkala T., 2007a. Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Ann. For. Sci. 64: 733–742.

    Article  Google Scholar 

  • González J.R., Kolehmainen O., and Pukkala T., 2007b. Using expert knowledge to model forest stand vulnerability to fire. Comput. Electron. Agric. 55: 107–114.

    Article  Google Scholar 

  • Graham R., McCaffrey S., and Jain T., 2004. Science basis for changing forest structure to modify wildfire behavior and severity, USDA Forest Service, Fort Collins, 43 p.

    Google Scholar 

  • Hardy C.C., 2005. Wildland fire risk and hazard: problems, definitions and concepts. For. Ecol. Manage. 211: 73–82.

    Article  Google Scholar 

  • Hardy C.C., Schmidt K.M., Menakis J.P., and Sampson R.N., 2001. Spatial data for national fire planning and fuel management. Int. J. Wildl. Fire 10: 353–372.

    Article  Google Scholar 

  • Hély C., Flannigan M., and Bergeron Y., 2003. Modeling tree mortality following wildfire in the Southeastern Canadian mixed-wood boreal forest. For. Sci. 49: 566–576.

    Google Scholar 

  • Hirsch K.G. and Martell D.L., 1996. A review of initial attack fire crew productivity and effectiveness. Int. J. Wildl. Fire 6: 199–215.

    Article  Google Scholar 

  • Hough W.A. and Albini F.A., 1978. Predicting fire behavior in palmettogalberry fuel complexes, USDA Forest Service, Asheville, 44 p.

    Google Scholar 

  • ICONA, 1990. Clave fotografica para la identificación de modelos de combustible, Defensa contra incendios forestales, MAPA, Madrid.

    Google Scholar 

  • Johnson R.A. and Wichern D.W., 1982. Applied multivariate statistical analysis, Prentice-Hall Inc., New Jersey, 800 p.

    Google Scholar 

  • Lentile L.B., Smith F.W., and Shepperd W.D., 2006. Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. Int. J. Wildl. Fire 15: 55

    Google Scholar 

  • Moreira F., Rego F., and Ferreira P.G., 2001. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Land. Ecol. 16: 557–567.

    Article  Google Scholar 

  • Pollet J. and Omi P.N., 2002. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildl. Fire 11: 1–10.

    Article  Google Scholar 

  • Rothermel R.C., 1972. A mathematical model for predicting fire spread in wildland fuels, USDA Forest Service, Ogden, 40 p.

    Google Scholar 

  • Rothermel R.C., Wilson R.A., Morris G.A., and Sackett S.S., 1986. Modeling moisture content of fine dead wildland fuels, USDA Forest Service, Ogden, 61 p.

    Google Scholar 

  • Sandberg D.V., Ottmar R.D., and Cushon G.H., 2001. Characterizing fuels in the 21st century. Int. J. Wildl. Fire 10: 381–387.

    Article  Google Scholar 

  • Scott J.H. and Reinhardt E.D., 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service, Fort Collins, 59 p.

    Google Scholar 

  • Silva T., Pereira J.C., Paúl J., Santos M.N., and Vasconcelos M.P., 2006. Estimativa de emissões atmosféricas originadas por fogos rurais em Portugal. Silva Lusitana 14: 239–263.

    Google Scholar 

  • Van Wagner C., 1977. Conditions for the start and spread of crown fire. Can. J. For. Res. 3: 373–378.

    Article  CAS  Google Scholar 

  • Viegas D.X., Viegas M.T., and Ferreira A.D., 1992. Moisture content of fine forest fuels and fire occurrence in Central Portugal. Int. J. Wildl. Fire 2: 69–86.

    Article  Google Scholar 

  • Viegas D.X., Piñol J., Viegas M.T., and Ogaya R., 2001. Estimating live fine fuels moisture content using meteorologically-based indices. Int. J. Wildl. Fire 10: 223–240.

    Article  Google Scholar 

  • Wang G.G., 2002. Fire severity in relation to canopy composition within burned boreal mixedwood stands. For. Ecol. Manage. 163: 85–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo M. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 66, 415 (2009). https://doi.org/10.1051/forest/2009013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009013

Keywords

Mots-clés