Skip to main content
Log in

Infection of drone larvae (Apis mellifera) with American foulbrood

Infection par la loque américaine des larves de mâles de deux lignées d’abeilles domestiques (Apis mellifera)

Infektion von Drohnenlarven (Apis mellifera) mit Amerikanischer Faulbrut

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

In-vitro reared drone larvae of several sister queens from an Apis mellifera ligustica and a Buckfast breeding line were infected with Paenibacillus larvae (type strain ATCC 9545) causing American foulbrood (AFB). Although drone larvae were susceptible to AFB and could be infected under in-vitro conditions there were differences within and between lineages. Infection sensitivity was higher in the A. m. ligustica line compared to the Buckfast line. Different infection thresholds were found among sister queens of the A. m. ligustica line suggesting a considerable genetic variance for larval resistance against AFB.

Zusammenfassung

Drohnenlarven von Schwesterköniginnen einer Buckfast und einer Apis mellifera ligustica Brutlinie wurden mit Sporen eines Bakterien-Typstammes von Paenibacillus larvae, dem Erreger der Amerikanischen Faulbrut (AFB), einer schweren Brutkrankheit der Honigbiene, infiziert. Die Sterblichkeit der Larven wurde täglich in nicht-infizierten Kontrollen und der sporenbehandelten Gruppe aufgenommen. Die Larven wurden unter kontrollierten in-vitro Bedingungen aufgezogen, um alle Faktoren auszuschließen, die bekanntermaßen AFB Resistenz auf Kolonieebene beeinflussen (z.B. hygienisches Verhalten, Futterkomponenten). Larven der untersuchten Königinnen der Buckfastlinie waren bei den untersuchten Sporendosen weniger anfällig als Nachkommen der Apis mellifera ligustica Linie (Abb. 1). Dies zeigt, dass in verschiedenen Honigbienenlinien unterschiedliche Resistenzniveaus existieren. Wir können allerdings nicht sagen, ob die gefundenen Resistenzniveaus repräsentativ für alle Buckfast bzw. Apis mellifera ligustica Linien sind und ob sie auch konsistent für andere Bakterienstämme wären. Innerhalb der A. m. ligustica Linie fanden wir eine Varianz für Infektionsgrenzwerte (Abb. 2). Dies zeigt, dass diese Grenzwerte auch genetisch beeinflusst sein können. Zusätzlich wurde eine Methode entwickelt, um Varianz in larvaler Resistenz gegen AFB zu bestimmen, unter Benutzung haploider Drohnenlarven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burnside C.E., Sturtevant A.P., Holst E.C. (1949) Diagnosing bee diseases in the apiary, US Dept. Agric. Circ. 392, 31 p.

  • Evans J.D. (2004) Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae, J. Invertebr. Pathol. 85, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Evans J.D., Pettis J.S. (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera, Evolution 59, 2270–2274.

    PubMed  CAS  Google Scholar 

  • Fries I., Camazine S. (2001) Implications of horizontal and vertical pathogen transmission for honey bee epidemiology, Apidologie 32, 199–214.

    Article  Google Scholar 

  • Fries I., Lindström A., Korpela S. (2006) Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera), Vet. Microbiol. 114, 269–274.

    Article  PubMed  Google Scholar 

  • Gehan E.A. (1969) Estimating survival functions from the life table, J. Chronic Dis. 21, 629–644.

    Article  PubMed  CAS  Google Scholar 

  • Genersch E., Ashiralieva A., Fries I. (2005) Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees, Appl. Environ. Microbiol. 71, 7551–7555.

    Article  PubMed  CAS  Google Scholar 

  • Genersch E., Forsgren E., Pentikainen J., Ashiralieva A., Rauch S., Kilwinski J., Fries I. (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation, Int. J. Syst. Evol. Microbiol. 56, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Hansen H., Brødsgaard C.J. (1999) American foulbrood: a review of its biology, diagnosis and control, Bee World 80, 5–23.

    Google Scholar 

  • Haseman L. (1961) How long can spores of American foulbrood live? Am. Bee J. 101, 298–299.

    Google Scholar 

  • Jay S.C. (1963) The development of honeybees in their cells, J. Apic. Res. 2, 117–134.

    Google Scholar 

  • Nordström S., Fries I. (1995) A comparison of media and cultural conditions for identification of Bacillus larvae in honey, J. Apic. Res. 34, 97–103.

    Google Scholar 

  • Palmer K.A., Oldroyd B.P. (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry, Naturwissenschaften 90, 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Peng Y.S.C., Müssen E., Fong A., Montague M.A., Tyler T. (1992) Effects of chlortetracycline of honeybee worker larvae reared in vitro, J. Invertebr. Pathol. 60, 127–133.

    Article  CAS  Google Scholar 

  • Rinderer T.E., Rothenbuhler W.C. (1974) The influence of pollen on the susceptibility of honey-bee larvae to Bacillus larvae, J. Invertebr. Pathol. 23, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Rose R.I., Briggs J.D. (1969) Resistance to American foulbrood in honeybees. IX. Effects of honeybee larval food on the growth and viability of Bacillus larvae, J. Invertebr. Pathol. 13, 74–80.

    Article  Google Scholar 

  • Rothenbuhler W.C. (1958) Genetics and breeding of honeybee, Annu. Rev. Entomol. 3, 161–180.

    Article  Google Scholar 

  • Rothenbuhler W.C., Thompson V.C. (1956) Resistance to American foulbrood in honeybees. I. Differential survival of larvae of different genetic lines, J. Econ. Entomol. 49, 470–475.

    Google Scholar 

  • Spivak M., Gilliam M. (1998a) Hygienic behaviour of honeybees and its application for control of brood diseases and varroa. Part I. Hygienic behaviour and resistance to American foulbrood, Bee World 79, 124–134.

    Google Scholar 

  • Spivak M., Gilliam M. (1998b) Hygienic behaviour of honeybees and its application for control of brood diseases and varroa. Part II. Studies on hygienic behaviour since the Rothenbuhler era, Bee World 79, 169–186.

    Google Scholar 

  • Sturtevant A.P. (1932) Relation of commercial honey to the spread of American foulbrood, J. Agric. Res. 45, 257–285.

    Google Scholar 

  • Sturtevant A.P., Revell I.L. (1953) Reduction of Bacillus larvae spores in liquid food of honeybees by action of the honey stopper, and its relation to the development of American foulbrood, J. Econ. Entomol. 46, 855–860.

    Google Scholar 

  • Woodrow A.W., Holst E.C. (1942) The mechanism of colony resistance to American foulbrood, J. Econ. Entomol. 35, 327–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Behrens.

Additional information

Manuscript editor: Maria Spivak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, D., Forsgren, E., Fries, I. et al. Infection of drone larvae (Apis mellifera) with American foulbrood. Apidologie 38, 281–288 (2007). https://doi.org/10.1051/apido:2007009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido:2007009

Navigation