Skip to main content
Log in

Digital imaging information technology applied to seed germination testing. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The application of digital imaging information technology to seed germination testing is discussed. This technology is reviewed in light of recent interest on the development and adoption of sustainable agrosystems joined with a modern strategy of “precision agriculture”, which provides new complex information tools for better crop production. Basic concepts on the patterns of image analysis descriptors of imbibing seed performance are described with the objective of demonstrating the potential of this technique to be adequate for overcoming problems encountered with a standard seed germination test. The application of different image analysis system prototypes in monitoring seed germination of Brassica, as well as several other crop species, has provided encouraging results, highlighting the reliability of this technique to quickly acquire digital images and to extract numeric descriptors of germination and radicle growth events. Another aspect of digital imaging is the possibility to determine the colour space of a two-dimensional seed surface. Experiments carried out on lentil seed germination have shown that quantitative changes in Red-Green-Blue (RGB) colour component density may be considered as markers of the start of germination. In addition, the extracted RGB data may be used to trace a virtual three-dimensional surface plot allowing a better analysis of colour distribution on the lentil’s surface. RGB colour density can also be used to determine any variation in colour due to the ‘browning effect’ as a result of advancing seed deterioration. The potential of RGB markers in classifying sub-samples and maintaining high germination quality in aged seed samples represents a non-destructive method in seed testing and sorting. As a conclusion, the information flow deriving from digital image processing should be integrated with other bio-morphological, taxonomic and ‘omic-system’ databases. The final target should be an interrelated and complex database for a deeper functional and structural knowledge of plant species, which can respond to the needs of farmers, seed industries, biodiversity conservation and seed basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altieri M.A., Letourneau D.K., Davis J.R. (1983) Developing sustainable agroecosystems, Bioscience 33, 45–49.

    Article  Google Scholar 

  • Anquar F., Mannino M.R., Casals M.L., Fougereux J.A., Demilly D. (2001) Carrot seeds grading using a vision system, Seed Sci. Technol. 29, 215–225.

    Google Scholar 

  • AOSA (2000) Rules for testing seeds, in: Association of Official Seed Analysts (Eds.).

  • Bewley J.D. (1997) Seed germination and dormancy, Plant Cell 9, 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Braga R., Dal Fabbro I.M., Borem F.M., Rabelao G., Arizaga R., Rabal H., Trivi M. (2003) Assessment of seed viability by laser speckle techniques, Biosyst. Eng. 86, 297–294.

    Article  Google Scholar 

  • Braga R., Rabelo G.F., Granato L.R., Santos E.F., Machado J.C., Arizaga R., Rabal H.J., Trivi M. (2005) Detection of fungi in beans by the laser biospeckle technique, Biosyst. Eng. 91, 465–469.

    Article  Google Scholar 

  • Chen P., Sun Z. (1991) A review of non-destructive methods for quality evaluation and sorting of agricultural products J. Agric. Eng. Res. 49, 85–98.

    Article  Google Scholar 

  • Clergue B., Amiaud B., Pervanchoon F., Laserre-Joulin F., Plantureux S. (2005) Biodiversity: function and assessment in agricultural areas. A review, Agron. Sustain. Dev. 25, 1–15.

    Article  Google Scholar 

  • Coen E., Rolland-lagan A.-G., Matthews M., Bangham J.A., Prusinkiewicz P. (2004) The genetics of geometry, PNAS 101, 4728–4735.

    Article  PubMed  CAS  Google Scholar 

  • Cox S. (2002) Information technology: the global key to precision agriculture and sustainability, Comp. Electron. Agricult. 36, 93–111.

    Article  Google Scholar 

  • Daoust T., Fujimura K., McDonald M.B., Bennett M.A. (2005) A computer-based system for seed identification, Seed Technol. 27, 190–202.

    Google Scholar 

  • Dell’Aquila A. (2003) Image analysis as a tool to study deteriorated cabbage (Brassica oleracea L.) seed imbibition under salt stress conditions, Seed Sci. Technol. 31, 619–628.

    Google Scholar 

  • Dell’Aquila A. (2004a) Cabbage, lentil, pepper and tomato seed germination monitored by an image analysis system, Seed Sci. Technol. 32, 225–229.

    Google Scholar 

  • Dell’Aquila A. (2004b) Application of a computer-aided image analysis system to evaluate seed germination under different environmental conditions, It. J. Agron. 8, 51–62.

    Google Scholar 

  • Dell’Aquila A. (2005) The use of image analysis to monitor the germination of seeds of broccoli (Brassica oleracea L.) and radish (Raphanus sativus L.), Ann. Appl. Biol. 146, 545–550.

    Article  Google Scholar 

  • Dell’Aquila A. (2006) Red-Green-Blue (RGB) colour density as a nondestructive marker in sorting deteriorated lentil (Lens culinaris Medik.) seeds, Seed Sci. Technol. 34, 609–619.

    Google Scholar 

  • Dell’Aquila A. (2007) Towards new computer imaging techniques applied to seed quality testing and sorting, Seed Sci. Technol. 38, 519–538.

    Google Scholar 

  • Dell’Aquila A., van Eck J.W., van der Heijden G.W.A.M. (2000) The application of image analysis in monitoring the imbibition process of white cabbage (Brassica oleracea L.) seeds, Seed Sci. Res. 10, 163–169.

    Article  Google Scholar 

  • Dell’Aquila A., van der Shoor R., Jalink H. (2002) Application of chlorophyll fluorescence in sorting controlled deteriorated white cabbage (Brassica oleracea L.) seeds, Seed Sci. Technol. 30, 689–695.

    Google Scholar 

  • Ducournau S., Feutry A., Plainchault P., Revollon P., Vigouroux B., Wagner M.H. (2004) An image acquisition system for automated monitoring of the germination rate of sunflower seeds, Comp. Electron. Agric. 44, 189–202.

    Article  Google Scholar 

  • Ducournau S., Feutry A., Plainchault P., Revollon P., Vigouroux B. (2005) Using computer vision to monitor germination time course of sunflower (Helianthus annus L.) seeds, Seed Sci. Technol. 33, 329–340.

    Google Scholar 

  • Ellis R.H., Roberts E.H. (1981) The quantification of ageing and survival in orthodox seeds, Seed Sci. Technol. 9, 373–409.

    Google Scholar 

  • Fairchild M.D. (1998) Color appearance Models, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Geneve R.L., Kester S.T. (2001) Evaluation of seedling size following germination using computer-aided analysis of digital images from a flat-bed scanner, Hort. Sci. 36, 1117–1120.

    Google Scholar 

  • Granitto P.M., Navone H.D., Verdes P.F., Ceccato H.A. (2002) Weed seeds identification by machine vision, Comp. Electr. Agr. 33, 91–103.

    Article  Google Scholar 

  • Gupta M.L., George D.L., Basnet B.B. (2005) Seed identification using a computerised database, Seed Sci. Technol. 33, 647–654.

    Google Scholar 

  • Hampton J.C. (1995) Methods of viability and vigour testing: a critical appraisal, in: Basra A.S. (Ed.), Seed Quality. Basic Mechanism and Agricultural Implications, Food Products Press, The Haworth Press, Inc. New York, pp. 81–118.

    Google Scholar 

  • Howarth M.S., Stanwood P.C. (1993) Imaging techniques to enhance the preservation and utilization of seed germplasm J. Seed Technol. 17, 54–64.

    Google Scholar 

  • ISTA (2005) International rules for seed testing, in: International Seed Testing association (Eds.).

  • Keefe P.D., Draper S.R. (1986) The measurement of new characters for cultivar identification in wheat using machine vision, Seed Sci. Technol. 14, 715–724.

    Google Scholar 

  • Keys R.D. (1982) CASAS (computerized automated seed analysis system): an approach to the analysis and testing of seed J. Seed Technol. 7, 23–35.

    Google Scholar 

  • Kruse M. (2000) The effect of moisture content on linear dimensions in cereal seeds measured by image analysis, Seed Sci. Technol. 28, 779–791.

    Google Scholar 

  • Kurugollu F., Sankur B., Harmanci A.E. (2001) Color image segmentation using histogram multithresholding and fusion, Image Vision Comput. 19, 915–928.

    Article  Google Scholar 

  • Lew M., Sebe N., Huang T.S. (2007) The Age of human computer interaction, Image Vision Comput. 25, 1833–1835.

    Article  Google Scholar 

  • Loomis J.J., Fujimura K., McDonald M., James D., Bennett M. (1999) Using computer graphics for three-dimensional seed cataloguing, Seed Sci. Technol. 27, 439–446.

    Google Scholar 

  • McCormac A.C., Keefe P.D. (1990) Cauliflower (Brassica oleracea L.) seed vigour: imbibition effects J. Exp. Bot. 41, 893–899.

    Article  Google Scholar 

  • McDonald M.B., Evans A.F., Bennet M.A. (2001) Using scanner to improve seed and seedling evaluations, Seed Sci. Technol. 29, 683–689.

    Google Scholar 

  • Oakley K., Kester S.T., Geneve R.L. (2004) Computer-aided digital image analysis of seedling size and growth rate assessing seed vigour in Impatiens, Seed Sci. Technol. 32, 837–845.

    Google Scholar 

  • Peña-Barragán J.M., López-Granados F., García-Torres L., Jurado-Expósito M., de la Orden M.S., García-Ferrer A. (2008) Discriminatin cropping systems and agro-environmental measures by remote sensing, Agron. Sustain. Dev. 28, 355–362.

    Article  Google Scholar 

  • Pérez A.J., López F., Benlloch J.V., Christensen S. (1997) Colour and shape analysis techniques for weed detection in cereal fields, First European Conference for information Technology in Agriculture, Copenhagen, 15–18 June, pp. 45–50.

  • Priestley D.A. (1986) Morphological, structural, and biochemical changes associated with seed ageing, in: Priestley D.A. (Ed.), Seed Aging, Comstock Publishing Associates, Ithaca and London, pp. 125–195.

    Google Scholar 

  • Prusinkiewicz P. (2004) Modelling plant growth and development, Curr. Opin. Plant Biol. 7, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Sako Y., McDonald M.B., Fujimura K., Evans A.F., Bennett M.A. (2001) A system for automated seed vigour assessment, Seed Sci. Technol. 29, 625–636.

    Google Scholar 

  • Silk W.K. (1984) Quantitative descriptions of development, Ann. Rev. Plant Physiol. 35, 479–418.

    Article  Google Scholar 

  • Sun W.Q., Leopold A.C. (1995) The Maillard reaction and oxidative stress during aging of soybean seeds, Physiol. Plant. 94, 94–104.

    Article  CAS  Google Scholar 

  • Sundblad L.-G., Geladi P., Dunberg A., Sundberg B. (1998) The use of image analysis and automation for measuring mitotic index in apical conifer meristems J. Exp. Bot. 49, 1749–1756.

    Article  CAS  Google Scholar 

  • Ureña R., Rodriguez F., Berenguel M. (2001) A machine vision system for seeds germination quality evaluation using fuzzy logic, Comp. Electron. Agric. 32, 1–20.

    Article  Google Scholar 

  • van der Heijden G.W.A.M, Polder, G., van Eck J.W., Jalink H., van der Shoor R. (1999) Automatic determination of germination of seeds, 1999 Word Seed Conference, 6–8 September 1999, Cambridge, UK, Programme & Abstract, p. 14

  • Wettlauer S.H., Leopold, A.C. (1991) Relevance of Amadori and Maillard products to seed deterioration, Plant Physiol. 97, 165–169.

    Article  Google Scholar 

  • Xu L., Fujimura K., McDonald M.B. (2007) Automatic separation of overlapping seedlings by network optimization, Seed Sci. Technol. 35, 337–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Dell’ Aquila.

Additional information

(former Senior Scientist of the Institute of Plant Genetics — CNR, Bari, Italy).

About this article

Cite this article

Dell’ Aquila, A. Digital imaging information technology applied to seed germination testing. A review. Agron. Sustain. Dev. 29, 213–221 (2009). https://doi.org/10.1051/agro:2008039

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2008039

Navigation