Skip to main content

Advertisement

Log in

Alternative strawberry production using solarization, metham sodium and beneficial soil microbes as plant protection methods

  • Original Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

High-impact chemical biocides are no longer used in crop production systems due to environmental concerns and sustainable agricultural practices must involve the use of environmentally friendlier alternatives for controlling pests and diseases. We compared the effect of two disinfestation treatments, solarization and metham sodium, combined with the arbuscular mycorrhizal fungus Glomus intraradices, the saprophytic fungus Trichoderma aureoviride and the plant growth-promoting rhizobacteria Bacillus subtilis, in strawberry crop production. Also, the effects of high temperatures achieved during the solarization process on the viability of mycorrhizal inocula were evaluated under controlled conditions in a laboratory study. Moist inocula of the arbuscular mycorrhizal fungus G. intraradices were maintained for three hours for five consecutive days at 35, 40, 45, 50 and 55 °C, respectively. Our results show that soil solarization and metham-sodium disinfestation improved strawberry yield by 24% and 18%, respectively, compared with the fruit yield obtained in untreated soil, whereas application of T. aureoviride and B. subtilis did not affect plant production in the absence of a pathological agent. Solarization and metham-sodium application did not eliminate the natural populations of arbuscular mycorrhizal fungi and at the end of the experiment all plants, independently of the treatments, were mycorrhizal. After the heating treatments, under controlled conditions, the inoculum of G. intraradices submitted to 50 °C completely lost its mycorrhizal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afek U., Menge J.A., Johnson E.L.V. (1991) Interaction among mycorrhizae, soil solarization, metalaxyl and plants in the field, Plant Dis. 75, 665–671.

    Article  CAS  Google Scholar 

  • Anderson W.C., Haglund W.A. (2002) In-row sprayblade fumigation with metham sodium to control weeds and diseases, Washington State University, www.mtvernon.wsu.edu/methamsodium.html.

  • Barea J.M., Pozo J.M., Azcón R., Azcón-Aguilar C. (2005) Microbial co-operation in the rhizosphere, J. Exp. Bot. 56, 1761–1778.

    Article  PubMed  CAS  Google Scholar 

  • Bai Y., Zhou X., Smith D.L. (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum, Crop Sci. 43, 1774–1781.

    Article  Google Scholar 

  • BendavidVal R., Rabinowitch H.D., Katan J., Kapulnik Y. (1997) Viability of VA-mycorrhizal fungi following soil solarization and fumigation, Plant Soil 195, 185–193.

    Article  CAS  Google Scholar 

  • Butler E. (1980) A method for long time culture storage of Rhizoctonia solani, Phytopathology 70, 820–821.

    Article  Google Scholar 

  • Calvet C., Pera J., Barea J.M. (1989) Interactions of Trichoderma spp. with Glomus mosseae and two wilt pathogenic fungi, Agri. Ecosyst. Environ. 29, 59–65.

    Article  Google Scholar 

  • Calvet C., Pera J., Barea J.M. (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture, Plant Soil 148, 1–6.

    Article  Google Scholar 

  • Camprubí A., Calvet C. (1996) Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies, HortScience 3, 366–369.

    Google Scholar 

  • Cook R.J., Baker K.F. (1983) The Nature and practice of biological control of plant pathogens, The American Phytopathological Society, St. Paul, Minnesota 55121, USA.

    Google Scholar 

  • Daft M.J., Spencer D., Thomas G.E. (1987) Infectivity of vesicular arbuscular mycorrhizal inocula after storage under various environmental conditions, T. Brit. Mycol. Soc. 88, 21–27.

    Article  Google Scholar 

  • DeVay J.E., Katan J. (1991) Mechanisms of pathogen control in solarized soils, in: Katan J., DeVay J.E. (Eds.), Soil Solarization, CRC Press, Boca Raton, Fl, pp. 87–101.

    Google Scholar 

  • Gamliel A., Gadkar V., Zilberg V., Beniches M., Rabinowich E., Manor H., Wininger S., Kapulnik Y. (2004) Effect of solarization intensity on the control of pink root of chives, and the response of the crop to AM fungal application, Symbiosis 37, 233–247.

    Google Scholar 

  • Gerdemann J.W., Nicolson T.H. (1963) Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting, T. Brit. Mycol. Soc. 46, 235–244.

    Article  Google Scholar 

  • Glick B.R. (1995) The enhancement of plant growth by free-living bacteria, Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004) Trichoderma species-opportunistic, avirulent plant symbionts, Nat. Rev. Microb. 2, 43–56.

    Article  CAS  Google Scholar 

  • Hepper C.M. (1984) Isolation and culture of VA mycorrhizal (VAM) fungi, in: Powell C.Ll., Bagyaraj D.J. (Eds.), VA Mycorrhiza, CRC Press, Boca Raton, Florida, USA, pp. 95–112.

    Google Scholar 

  • Howell C.R. (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts, Plant Dis. 87, 4–10.

    Article  Google Scholar 

  • Katan J. (1981) Solar heating (solarization) of soil for control of soilborne pests, Ann. Rev. Phytopathol. 19, 211–236.

    Article  Google Scholar 

  • Katan J. (1999) The methyl bromide issue: problems and potential solutions, J. Plant Pathol. 81, 153–159.

    CAS  Google Scholar 

  • Luvisi A., Materazzi A., Triolo E. (2006) Steam and exothermic reactions as alternative techniques to control soil-borne diseases in basil, Agron. Sustain. Dev. 26, 201–207.

    Article  Google Scholar 

  • Locascio S.J., Olson S.M., Chase C.A., Sinclair T.R., Dickson D.W., Mitchell D.J., Chellemi D.O. (1999) Strawberry production with alternatives to methyl bromide fumigation, Proc. Nat. Agr. Plastics Congress 28, 148–154.

    Google Scholar 

  • Menge J.A., Johnson E.L.V., Minassian V. (1979) Effect of heat treatment and three pesticides upon the growth and reproduction of the mycorrhizal fungus Glomus fasciculatus, New Phytol. 82, 473–480.

    Article  CAS  Google Scholar 

  • Menge J.A., Raski D.J., Lider L.A., Johnson E.L.V, Jones N.O. (1983) Interactions between mycorrhizal fungi, soil fumigation and growth of grapes in California, Am. J. Enol. Viticult 34, 117–121.

    Google Scholar 

  • Montealegre J.R., Herrera R., Velásquez J.C, Silva P., Besoaín X. (2005) Biocontrol of root and crown rot in tomatoes under greenhouse conditions using Trichoderma harzianum and Paenibacillus lentimorbus. Additional effect of solarization, Electron. J. Biotechnol. 8.

  • Parmeter J.R., Whitney H.S. (1970) Taxonomy and nomenclature of the imperfect state, in: Parmeter J.R. (Ed.), Rhizoctonia solani, biology and pathology, University of California Press, San Diego, pp. 7–19.

    Google Scholar 

  • Porter W.M. (1979) The “most probable number” method for enumerating infective propagules of vesicular-arbuscular mycorrhizal fungi in soil, Aust. J. Soil Res. 17, 515–519.

    Article  Google Scholar 

  • Powell C.L. (1980) Mycorrhizal infectivity of eroded soils, Soil Biol. Biochem. 12, 247–250.

    Article  Google Scholar 

  • Schreiner R.P., Ivors K.L., Pinkerton J.N. (2001) Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression, Mycorrhiza 11, 273–277.

    Article  CAS  Google Scholar 

  • Sieverding E. (1988) Effect of soil temperature on performance of different VA mycorrhizal isolates with cassava, Angew. Botanik 62, 295–300.

    Google Scholar 

  • Sneh B., Burpee L., Ogoshi A. (1991) Identification of Rhizoctonia species, APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Soulas M.L., Le Bihan B., Camporota P., Jarosz C., Salerno M.I., Perrin R. (1997) Solarization in a forest nursery: effect on ectomycorrhizal soil infectivity and soil receptiveness to inoculation with Laccaria bicolour, Mycorrhiza 7, 95–100.

    Article  Google Scholar 

  • Stapleton J.J., DeVay J.E. (1984) Thermal components of soil solarization as related to changes in soil and root microflora and increased plant growth response, Dis. Control Pest Manag. 74, 255–259.

    Google Scholar 

  • Vázquez M.M., César S., Azcón R., Barea J.M. (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants, Appl. Soil Ecol. 15, 261–272.

    Article  Google Scholar 

  • Vestberg M., Kukkonen S., Saari K., Parikka P., Huttunen J., Tainio L., Devos N., Weekers F., Kevers C., Thonart P., Lemoine M.C., Cordier C., Alabouvette C., Gianinazzi S. (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry, Appl. Soil Ecol. 27, 243–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Camprubí.

About this article

Cite this article

Camprubí, A., Estaún, V., El Bakali, M.A. et al. Alternative strawberry production using solarization, metham sodium and beneficial soil microbes as plant protection methods. Agron. Sustain. Dev. 27, 179–184 (2007). https://doi.org/10.1051/agro:2007007

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2007007

Navigation