Skip to main content
  • Original Article
  • Published:

Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches

Dégâts du gel sur des aiguilles primaires et secondaires chez différentes espèces de pins méditerranéens dans des niches écologiques contrastées

Abstract

  • • Pine seedlings show a marked ontogenetic difference between primary and secondary needles, the latter prevailing with a different timing among species.

  • • Using the electrolyte leakage method following an artificial freezing test, we aimed at (1) determining the differences in freezing tolerance between primary and secondary needles in eight pines of contrasting thermal habitats: P. canariensis, P. pinea, P. halepensis, P. brutia, P. pinaster, P. nigra, P. sylvestris and P. radiata, (2) evaluating the relation between freezing tolerance and sclerophylly and (3) relating freezing tolerance with the climate of origin.

  • • Primary needles were significantly more sensitive to freezing than secondary needles in Pinus halepensis, P. brutia, P. pinaster and P. nigra, whereas no differences were found in P. canariensis, P. pinea and P. radiata. LT50 was uncorrelated with needle sclerophylly but very highly correlated with the mean temperature of the coldest month at the seed source.

  • • Results support an adaptive role of secondary needles in the mountain Mediterranean pines P. nigra, P. pinaster and P. brutia, while the more complex responses in coastal Mediterranean pines can be interpreted in the light of seedling ontogeny and species’ ecological niches.

Résumé

  • • Les jeunes plants de pin présentent une nette différence ontogénétique entre aiguilles primaires et secondaires, les secondes devenant dominantes après des délais variables selon les espèces.

  • • À l’aide d’une expérience de gel artificiel et à l’aide de la méthode de perte d’électrolyte, nous avons visé à : (1) déterminer les différences de tolérance au gel entre aiguilles primaires et secondaires de huit espèces de pins présentant des habitats thermiques contrastés : P. canariensis, P. pinea, P. halepensis, P. brutia, P. pinaster, P. nigra, P. sylvestris et P. radiata, (2) évaluer la relation entre tolérance au gel et degré de sclérophyllie, et (3) mettre en relation tolérance au gel et climat d’origine.

  • • Les aiguilles primaires étaient beaucoup plus sensibles au gel que les aiguilles secondaires chez Pinus halepensis, P. brutia, P. pinaster et P. nigra, alors qu’aucune différence n’a été constatée chez P. canariensis, P. pinea et P. radiata. La température induisant 50 % de mortalité n’était pas corrélée avec la sclérophyllie des aiguilles mais très fortement avec la température moyenne du mois le plus froid de la provenance des semences.

  • • Les résultats corroborent l’idée d’un rôle adaptatif des aiguilles secondaires des pins méditerranéens montagnards P. nigra, P. pinaster et P. brutia, tandis que les réponses plus complexes des pins méditerranéens côtiers peuvent être interprétées à la lumière de l’ontogénie des semis et des niches écologiques des espèces.

References

  • Alía R., Moro J., and Denis J.B., 1997. Perfomance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can. J. For. Res. 27: 1548–1559.

    Article  Google Scholar 

  • Bannister P., Colhoun C.M., and Jameson P.E., 1995. The winter hardening and foliar frost resistance of some New Zealand species of Pittosporum. N. Z. J. Bot. 33: 409–414.

    Google Scholar 

  • Bariteau M., 1992. Geographic-variation and stress-adaptation of Pinus halepensisPinus brutia complex in Mediterranean conditions — Preliminary results of a provenance test in France. Ann. Sci. For. 49: 261–276.

    Article  Google Scholar 

  • Blodner C., Skroppa T., Johnsen O., and Polle A., 2005. Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance. J. Plant Physiol. 162: 549–558.

    Article  PubMed  Google Scholar 

  • Boorse G.C., Ewers F.W., and Davis S.D., 1998. Response of chaparral shrubs to below-freezing temperatures: Acclimation, ecotypes, seedlings vs. adults. Am. J. Bot. 85: 1224–1230.

    Article  PubMed  CAS  Google Scholar 

  • Climent J., Chambel M.R., López R., Mutke S., Alía R., and Gil L., 2006. Population divergence for heteroblasty in the Canary Islands pine (Pinus canariensis, Pinaceae). Am. J. Bot. 93: 840–848.

    Article  PubMed  Google Scholar 

  • Darrow H.E., Bannister P., Burritt D.J., and Jameson P.E., 2001. The frost resistance of juvenile and adult forms of some heteroblastic New Zealand plants. N. Z. J. Bot. 39: 355–363.

    Article  Google Scholar 

  • Erickson R.O. and Michelini F.J., 1957. The Plastochron Index. Am. J. Bot. 44: 297–305.

    Article  Google Scholar 

  • Flint H.L., Boyce B.R., and Beattie D.J., 1967. Index of injury — a useful expression of freezing injury to plant tissues as determined by electrolytic method. Can. J. Plant Sci. 47: 229–230.

    Article  Google Scholar 

  • Greer D.H., Stanley C.J., and Warrington I.J., 1989. Photoperiod control of the initial phase of frost hardiness development in Pinus radiata. Plant Cell Environ. 12: 661–668.

    Article  Google Scholar 

  • Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., and Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.

    Article  Google Scholar 

  • IPCC. 2007. Climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change (IPCC), Cambridge University Press, Cambridge (UK), p. 396.

    Google Scholar 

  • Jimenez S., Zellnig G., Stabentheiner E., Peters J., Morales D., and Grill D., 2000. Structure and ultrastructure of Pinus canariensis needles. Flora 195: 228–235.

    Google Scholar 

  • Jones C.S., 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. Int. J. Plant Sci. 160: S105-S111.

    Article  PubMed  Google Scholar 

  • Klaus W., 1989. Mediterranean pines and their history. Plant Syst. Evol. 162: 133–163.

    Article  Google Scholar 

  • Langvall O. and Ottosson-Löfvenius M., 2002. Effect of shelterwood density on nocturnal near-ground temperature, frost injury risk and budburst date of Norway spruce. For. Ecol. Manage. 168: 149–161.

    Article  Google Scholar 

  • Larcher W., 2000. Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst. 134: 279–295.

    Article  Google Scholar 

  • Larcher W., 2005. Climatic constraints drive the evolution of low temperature resistance in woody plants. J. Agric. Meteorol. 61: 189–202.

    Article  Google Scholar 

  • Lester D., 1968. Developmental patterns of axillary meristematic activity in seedlings of Pinus. Bot. Gaz. 129: 206–210.

    Article  Google Scholar 

  • Lindkvist L., Gustavsson T., and Bogren J., 2000. A frost assessment method for mountainous areas. Agric. For. Meteorol. 102: 51–67.

    Article  Google Scholar 

  • López R., Zehavi A., Climent J., and Gil L., 2007. Contrasting ecotypic differentiation for growth and survival in Pinus canariensis (Pinaceae). Aust. J. Bot. 55: 1–11.

    Article  Google Scholar 

  • Luis V., Taschler D., Hacker J., Jiménez M.S., Wieser G., and Neuner G., 2007. Ice nucleation and frost resistance of Pinus canariensis seedlings bearing needles in three different developmental states. Ann. For. Sci. 64: 177–182.

    Article  Google Scholar 

  • Meza-Basso L., Guarda P., Rios D., and Alberdi M., 1986. Changes in free amino acid and frost resistance in Nothofagus dombeyi leaves. Phytochemistry 25: 1843–1846.

    Article  CAS  Google Scholar 

  • Miller P.M., Eddleman L.E., and Miller J.M., 1995. Juniperus occidentalis juvenile foliage: advantages and disadvantages for a stresstolerant, invasive conifer. Can. J. For. Res. 25: 470–479.

    Article  Google Scholar 

  • Mutke S., Gordo J., Climent J., and Gil L., 2003. Shoot growth and phenology modelling of grafted stone pine (Pinus pinea L.) in inner Spain. Ann. For. Sci. 60: 527–537.

    Article  Google Scholar 

  • Palacio S., Milla R., and Montserrat-Martí G., 2005. A phenological hypothesis on the thermophilous distribution of Pistacia lentiscus L. Flora 200: 527–534.

    Google Scholar 

  • Pardos M., Calama R., and Climent J., 2008. Difference in cuticular transpiration and sclerophylly in juvenile and adult pine needles relates to the species-specific rates of development. Trees DOI: 10.1007/s00468-008-0296-6.

  • Repo T., Zhang G., Ryyppo A., Rikala R., and Vuorinen M., 2000. The relation between growth cessation and frost hardening in Scots pines of different origins. Trees 14: 456–464.

    Article  Google Scholar 

  • Sakai A., 1971. Freezing resistance of relicts from Arcto-Tertiary flora. New Phytol. 70: 1199–1205.

    Article  Google Scholar 

  • Sakai A. and Larcher W., 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological and studies: analysis and synthesis, Vol. 62, Springer.

  • Savolainen O., Bokma F., García-Gil R., Komulainen P., and Repo T., 2004. Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For. Ecol. Manage. 197: 79–89.

    Article  Google Scholar 

  • Shelbourne C.J.A., Burdon R.D., Bannister M.H., and Thulin I.J., 1979. Choosing the best provenances of radiata pine for different sites in New Zealand. N. Z. J. For. 24: 288–300.

    Google Scholar 

  • Strimbeck G., Kjellsen T., Schaberg P., and Murakami P., 2007. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage. Trees 21: 557–567.

    Article  Google Scholar 

  • Tapias R., Climent J., Pardos J.A., and Gil L., 2004. Life histories of Mediterranean pines. Plant Ecol. 171: 53–68.

    Article  Google Scholar 

  • Taylor P.A., 1970. A model of airflow above changes in surface heat flux, temperature and roughness for neutral and unstable conditions. Boundary-Layer Meteorology 1: 18–39.

    Article  Google Scholar 

  • Tinus R.W., Burr K.E., Atzmon N., and Riov J., 2000. Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening. Tree Physiol. 20: 1097–1104.

    PubMed  CAS  Google Scholar 

  • Winn A.A., 1999. The functional significance and fitness consequences of heterophylly. Int. J. Plant Sci. 160: S113-S121.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Climent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Climent, J., Costa e Silva, F., Chambel, M.R. et al. Freezing injury in primary and secondary needles of Mediterranean pine species of contrasting ecological niches. Ann. For. Sci. 66, 407 (2009). https://doi.org/10.1051/forest/2009016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009016

Keywords

Mots-clés