Skip to main content

Advertisement

Log in

Bee genetics and conservation

Génétique des abeilles et conservation des espèces

Bienengenetik und Artenschutz

  • Review Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The emerging threat of pollinator decline has motivated research on bee conservation biology in order to both understand the causes of declines and to develop appropriate conservation strategies. The application of genetics to the conservation of diploid animals has proven to be important for both overcoming genetic threats to population viability and for providing tools to guide conservation programs. However, the haplodiploid bees have several unusual genetic properties of relevance to their conservation, which warrant special attention. Here I review how haplodiploidy and complementary sex determination affect genetic parameters pertinent to the viability and future evolutionary potential of bee populations. I also review how genetic tools can improve the conservation management of bees. I find that bees are especially prone to extinction for genetic reasons, and that genetics can provide invaluable tools for managing bee populations to circumvent pollinator decline.

Zusammenfassung

In dieser Arbeit betrachten wir, welche Rolle die Genetik im Rückgang der Bienenpopulationen spielt und wie die Werkzeuge der Genetik in Bienenschutzprojekten eingesetzt werden können. Genetische Marker haben sich als höchst nützlich erwiesen in der Bestimmung wichtiger demographischer Parameter von Bienenpopulationen (z.B. Populationsgrössen, Dichte, Vernetzung, Ausbreitungsraten und Sammelradien), sowie zur Klärung taxonomischer Probleme und zur Erkennung von Rückgängen in Populationen. Neuere Fortschritte in der Bienengenomik sollten ebenfalls einen Beitrag zur Erleichterung von Untersuchungen über die Ursachen von Rückgängen in Bienenpopulationen leisten. Die Integration der Kentnisse zur Genetik und Genomik der Bienen mit denen ihrer Ökologie sollte daher deutliche Verbesserungen in Bienen-schutzprogrammen zur Folge haben. Ein wichtiger Faktor, der kleine Bienenpopulationen bedroht, ist die durch Homozygotie am Geschlechtslokus ausgelöste Produktion nicht lebensfähiger, steriler diploider Männchen anstelle von Weibchen (Abb. 1). Das Vorkommen diploider Männchen ist für mindesten 27 Arten beschrieben (Tab. I) und die Frequenz dieser Männchen nimmt in kleinen Populationen durch Homozygotie am Geschlechtsbestimmungslokus bedingt durch genetische Drift zu (Abb. 2). Simulationsstudien lassen erwarten, dass die Produktion diploider Männchen die Populationswachstumsraten vor allem bei solitären Bienen reduzieren kann, die eine niedrige Fekundität in ihrer Gesamtlebenszeit aufweisen. Das Problem der Produktion diploider Männchen geht so Hand in Hand mit negativen Umweltfaktoren und führt zu einem schnelleren Rückgang und einer langsameren Erhohlung von Populationen (Abb. 3). Sie spielt damit eine wichtige Rolle im weltweiten Rückgang von Bienen.

Ausser der Produktion diploider Männchen könnte auch eine Inzuchtdepression das Überleben kleiner Bienenpopulationen gefährden. Obwohl zu erwarten wäre, dass die Haplodoploidie die genetische Bürde bei Bienen reduziert, zeigen sowohl theoretische Studien als auch empirische Befunde, dass selbst haplodiploide Organismen eine erhebliche Inzuchtdepression durchlaufen können. Schutzprogramme für gefährdete und zurückgehende Bienenpopulationen sollten daher bestrebt sein, die Produktion diploider Männchen und Inzucht zu reduzieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams J., Rothman E.D., Kerr W.E., Paulino Z.L. (1977) Estimation of the number of sex alleles and queen matings from diploid male frequencies in a population of Apis mellifera, Genetics 86, 583–596.

    PubMed  CAS  Google Scholar 

  • Agoze M.E., Drezen J.M., Renalt S., Preiquet G. (1994) Analysis of the reproductive potential of diploid males in the wasp Diadromus pulchellus (Hymenoptera: Ichneumonidae), Bull. Entomol. Res. 84, 213–218.

    Article  Google Scholar 

  • Allen-Wardell G., Bernhardt P., Bitner R., Burquez A., Buchmann S.L., Cane J.H., Cox P.A., Dalton V., Feinsinger P., Ingram M., Inouye D.W., Jones C.E., Kennedy K., Kevan P.G., Koopowitz H., Medellin R., Medellin-Morales S., Nabhan G.P. (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields, Conserv. Biol. 12, 8–17.

    Article  Google Scholar 

  • Antolin M.F. (1999) A genetic perspective on mating systems and sex ratios of parasitoid wasps, Res. Popul.Ecol. 41, 29–37.

    Article  Google Scholar 

  • Armbruster P., Reed D.H. (2005) Inbreeding depression in benign and stressful environments, Heredity 95, 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Ayabe T., Hoshiba H., Ono M. (2004) Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris, Chromosome Res. 12, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Beveridge M., Simmons L.W. (2006) Panmixia: an example from Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini), Mol. Ecol. 15, 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Beveridge M., Simmons L.W., Alcock J. (2006) Genetic breeding system and investment patterns within nests of Dawson’s burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini), Mol. Ecol. 15, 3459–3467.

    Article  PubMed  CAS  Google Scholar 

  • Beye M., Hasselmann M., Fondrk M.K., Page R.E., Omholt S.W. (2003) The gene csd is the primary signal for sexual development in the honey bee and encodes a new SR-type protein, Cell 114, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Bienefeld K., Reinhardt F., Pirchner F. (1989) Inbreeding effects of queen and workers on colony traits in the honey bee, Apidologie 20, 439–450.

    Article  Google Scholar 

  • Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemuller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Biswas S., Akey J.M. (2006) Genomic insights into positive selection, Trends Genet. 22, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Blanchetot A., Packer L. (1992) Genetic variability in the social bee Lasioglossum marginatum and a cryptic underscribed sibling species, as detected by DNA fingerprinting and allozyme electrophoresis, Insect Mol. Biol. 1, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Brook B.W., Burgman M.A., Akçakaya H.R., O’Grady J.J., Frankham R. (2002a) Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the numerical bath water, Conserv. Biol. 16, 262–263.

    Article  Google Scholar 

  • Brook B.W., Tonkyn D.W., O’Grady J.J., Frankham R. (2002b) Contribution of inbreeding to extinction risk in threatened species, Conserv. Ecol. 6, 16.

    Google Scholar 

  • Brown P.O., Botstein D. (1999) Exploring the new world of the genome with DNA microarrays, Nat. Genet. 21, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Byrne A., Fitzpatrick Ú. (2009) Bee conservation policy at the global, regional and national levels, Apidologie 40, 194–210.

    Article  Google Scholar 

  • Camargo C.A. (1979) Sex determination in bees. XI. Production of diploid males and sex determination in Melipona quadrifasciata, J. Apic. Res. 18, 77–84.

    Google Scholar 

  • Cameron E.C., Franck P., Oldroyd B.P. (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina, Mol. Ecol. 13, 2357–2364.

    Article  PubMed  CAS  Google Scholar 

  • Cane J.H. (2001) Habitat fragmentation and native bees: a premature verdict? Conserv. Ecol. 5, 3.

    Google Scholar 

  • Cane J.H., Tepedino V.J. (2001) Causes and extent of declines among native North American invertebrate pollinators: detection, evidence, and consequences, Conserv. Ecol. 5, 1.

    Google Scholar 

  • Carman G.M., Packer L. (1997) A cryptic species allied to Halictus ligatus Say (Hymenoptera; Halictidae) detected by allozyme electrophoresis, J. Kans. Entomol. Soc. 69, 168–176.

    Google Scholar 

  • Carvalho G.A. (2001) The number of sex alleles (CSD) in a bee population and its practical importance (Hymenoptera: Apidae), J. Hymenoptera Res. 10, 10–15.

    Google Scholar 

  • Chaline N., Ratnieks F.L.W., Raine N.E., Badcock N.S., Burke T. (2004) Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips, Apidologie 35, 311–318.

    Article  CAS  Google Scholar 

  • Chapman R.E., Wang J., Bourke A.F.G. (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators, Mol. Ecol. 12, 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B., Charlesworth D. (1999) The genetic basis of inbreeding depression, Genet. Res. 74, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Colla S.R., Packer L. (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidea), with special focus on Bombus affinis Cresson, Biodivers. Conserv. 17, 1379–1391.

    Article  Google Scholar 

  • Colla S.R., Otterstatter M.C., Gegear R.J., Thomson J.D. (2006) Plight of the bumblebee: Pathogen spillover from commercial to wild populations, Biol. Conserv. 129, 461–467.

    Article  Google Scholar 

  • Cook J.M. (1993) Sex determination in the Hymenoptera: a review of models and evidence, Heredity 71, 421–435.

    Article  Google Scholar 

  • Cook J.M., Crozier R.H. (1995) Sex determination and population biology of the Hymenoptera, Trends Ecol. Evol. 10, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Cornuet J.M. (1980) Rapid estimation of the number of sex alleles in panmictic honeybee populations, J. Apic. Res. 19, 3–5.

    Google Scholar 

  • Cornuet J.M., Luikart G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics 144, 2001–2014.

    PubMed  CAS  Google Scholar 

  • Cowan D.P., Stahlhut J.K. (2004) Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination, Proc. Natl Acad. Sci. USA 101, 10374–10379.

    Article  PubMed  CAS  Google Scholar 

  • Cowell J.K., Hawthorn L. (2007) The application of microarray technology to the analysis of the cancer genome, Curr. Mol. Med. 7, 103–120.

    Article  PubMed  CAS  Google Scholar 

  • Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.-L., Briese T., Hornig M., Geiser D.M., Martinson V., van Engelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J., Cui L., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder, Science 318, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Crnokrak P., Barrett S.C. (2002) Perspective: purging the genetic load: a review of the experimental evidence, Evolution 12, 2347–2358.

    Google Scholar 

  • Crozier R.H. (1976a) Counter-intuitive property of effective population size, Nature 262, 384.

    Article  PubMed  CAS  Google Scholar 

  • Crozier R.H. (1976b) Why Male-Haploid and Sex-Linked Genetic Systems Seem to Have Unusually Sex-Limited Mutational Genetic Loads, Evolution 30, 623–624.

    Article  Google Scholar 

  • Crozier R.H. (1977) Evolutionary genetics of the hymenoptera, Annu. Rev. Entomol. 22, 263–288.

    Article  Google Scholar 

  • Crozier R.H. (1985) Adaptive consequences of malehaploidy, in: Helle W., Sabelis M.W. (Eds.), Spider Mites: their biology, natural enemies and control, Elsevier Science Publisher B.V. Amsterdam, pp. 201–222.

    Google Scholar 

  • Danforth B.N. (1999) Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitocondrial COI sequence data, Syst. Entomol. 24, 377–393.

    Article  Google Scholar 

  • Danforth B.N., Mitchell P.L., Packer L. (1998) Mitochondrial DNA differentiation between two cryptic Halictus (Hymenoptera: Halictidae) species, Ann. Entomol. Soc. Am. 91, 387–391.

    CAS  Google Scholar 

  • Danforth B.N., Ji S., Ballard L.J. (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae), J. Kans. Entomol. Soc. 76, 221–235.

    Google Scholar 

  • Danks H.V. (1971) Nest mortality factors in stemnesting aculeate Hymenoptera, J. Anim. Ecol. 40, 79–82.

    Article  Google Scholar 

  • Darvill B., Knight M.E., Goulson D. (2004) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.

    Article  Google Scholar 

  • Darvill B., Ellis J.S., Lye G.C., Goulson D. (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae), Mol. Ecol. 15, 601–611.

    Article  PubMed  CAS  Google Scholar 

  • De Boer J.G., Ode P.J., Vet L.E.M., Whitfield J., Heimpel G.E. (2007) Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae), J. Evol. Biol. 20, 340–348.

    Article  PubMed  Google Scholar 

  • De la Rúa P., Jaffé R., Dall’Olio R., Muñoz I., Serrano J. (2009) Biodiversity, conservation and current threats to European honeybees, Apidologie 40, 263–284.

    Article  Google Scholar 

  • Dias B.S.F., Raw A., Imperatriz-Fonseca V.L. (1999) International pollinators initiative: The São Paulo declaration on pollinators., Brazilian Ministry of the Environment, Brasilia. [online] http://www. cbd.int/doc/case-studies/agr/cs-agr-pollinator-rpt. pdf (accessed on 2 February 2009).

  • Dick C.W., Roubik D.W., Gruber K.F., Bermingham E. (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.

    Article  PubMed  CAS  Google Scholar 

  • Duchateau M.J., Hoshiba H., Velthuis H.H.W. (1994) Diploid males in the bumblebee Bombus ter- restris: sex determination, sex alleles and viability, Entomol. Exp. Appl. 71, 263–269.

    Article  Google Scholar 

  • Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating behavior in Apoidea, Annu. Rev. Entomol. 25, 421–446.

    Article  Google Scholar 

  • Ellegren H., Sheldon B.C. (2008) Genetic basis of fitness differences in natural populations, Nature 452, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J.S., Knight M.E., Darvill B., Goulson D. (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae), Mol. Ecol. 15, 4375–4386.

    Article  PubMed  CAS  Google Scholar 

  • Else G., Felton J., Stubbs A. (1978) The Conservation of Bees and Wasps, Nature Conservancy Council, Peterborough.

    Google Scholar 

  • Estoup A., Scholl A., Pouvreau A., Solignac M. (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites, Mol. Ecol. 4, 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Estoup A., Solignac M., Cornuet J.M., Goudet J., Scholl A. (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe, Mol. Ecol. 5, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L., Heckel G. (2006) Computer programs for population genetics data analysis: a survival guide, Nat. Rev. Genet. 7, 745–758.

    Article  PubMed  CAS  Google Scholar 

  • Falconer D.S., Mackay T.F.C. (1996) Introduction to Quantitative Genetics, Longman, Essex, UK.

    Google Scholar 

  • Fisher R.A. (1930) The Genetic Theory of Natural Selection, Dover, New York.

    Google Scholar 

  • Fitzpatrick U., Murray M.G., Paxton R.J., Breen J., Cotton D., Santorum V., Brown M.J.F. (2006) Rarity and decline in bumblebees — A test of causes and correlates in the Irish fauna, Biol. Conserv. 136, 185–194.

    Article  Google Scholar 

  • Fontaine C., Dajoz I., Meriguet J., Loreau M. (2006) Functional Diversity of Plant-Pollinator Interaction Webs Enhances the Persistence of Plant Communities, PLoS Biol. 4, e1.

    Article  PubMed  CAS  Google Scholar 

  • Franck P., Cameron E., Good G., Rasplus J.Y., Oldroyd B.P. (2004) Nest architecture and genetic differentiation in a species complex of Australian stingless bees, Mol. Ecol. 13, 2317–2331.

    Article  PubMed  CAS  Google Scholar 

  • Frankham R. (1995 a) Effective population size/adult population size ratios in wildlife: a review, Genet. Res. 66, 95–107.

    Article  Google Scholar 

  • Frankham R. (1995b) Inbreeding and extinction: a threshold effect, Conserv. Biol. 9, 792–799.

    Article  Google Scholar 

  • Frankham R. (1998) Inbreeding and extinction: island populations, Conserv. Biol. 12, 665–675.

    Article  Google Scholar 

  • Frankham R. (2005) Genetics and extinction, Biol. Conserv. 126, 131–140.

    Article  Google Scholar 

  • Frankham R., Ballou J.D., Briscoe D.A. (2002) Introduction to conservation genetics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Franzén M., Larsson M. (2007) Pollen harvesting and reproductive rates in specialized solitary bees, Ann. Zool. Fenn. 44, 405–414.

    Google Scholar 

  • Gadau J., Gerloff C.U., Krüger N., Chan H., Schmid-Hempel P., Wile A., Page R.E.J. (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae), J. Hered. 87, 234–242.

    Article  CAS  Google Scholar 

  • Gaggiotti O.E. (2003) Genetic threats to population persistence, Ann. Zool. Fenn. 40, 155–168.

    Google Scholar 

  • Gerloff C.U., Schmid-Hempel P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae), Oikos 111, 67–80.

    Article  Google Scholar 

  • Gibbs J. (2009) Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae), Zootaxa 2032, 1–38.

    Google Scholar 

  • Gibson G. (2002) Microarrays in ecology and evolution: a preview, Mol. Ecol. 11, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Gilpin M.E. (1991) The genetic effective size of a metapopulation, Biol. J. Linn. Soc. Lond. 42, 165–175.

    Article  Google Scholar 

  • Glémin S. (2003) How are deleterious mutations purged? Drift versus nonrandom mating, Evolution 57, 2678–2687.

    PubMed  Google Scholar 

  • Goulson D., Lye G.C., Darvil B. (2008) Decline and conservation of bumble bees, Annu. Rev. Entomol. 53, 191–208.

    Article  PubMed  CAS  Google Scholar 

  • Green C.L., Oldroyd B.P. (2002) Queen mating frequency and maternity of males in the stingless bee Trigona carbonaria Smith, Insectes Soc. 49, 196–202.

    Article  Google Scholar 

  • Grixti J.C., Packer L. (2006) Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years, Can. Entomol. 138, 147–164.

    Article  Google Scholar 

  • Grixti J.C., Wong L.T., Cameron S.A., Favret C. (2009) Decline of bumble bees (Bombus) in the North American Midwest, Biol. Conserv. 142, 75–84.

    Article  Google Scholar 

  • Hanski I., Saccheri I. (2006) Molecular-Level Variation Affects Population Growth in a Butterfly Metapopulation, PLoS Biol. 4, e129.

    Article  PubMed  CAS  Google Scholar 

  • Harbo J.R., Harris J.W. (1999) Heritability in honey bees (Hymenoptera: Apidae) of characteristics associated with resistance to Varroa jacobsoni (Mesostigmata: Varroidae), J. Econ. Entomol. 92, 261–265.

    Google Scholar 

  • Hasselmann M., Gempe T., Schiott M., Nunes-Silva C.G., Otte M., Beye M. (2008) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees, Nature 454, 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Hebert P.N.D., Ratnasingham S., DeWaard J.R. (2003) Barcoding animal life: cytochrome c oxidase sub-unit 1 divergences among closely related species, Proc. R. Soc. Ser. B Biol. Sci. 270, S96-S99.

    Article  CAS  Google Scholar 

  • Hedrick P.W. (2000) Genetics of Populations, Second edn, Jones and Bartlett Publishers, Sudbury, Massachusetts.

    Google Scholar 

  • Hedrick P.W. (2004) Recent developments in conservation genetics, For. Ecol. Manage. 197, 3–19.

    Article  Google Scholar 

  • Hedrick P.W., Gilpin M.E. (1997) Genetic effective size of a metapopulation, in: Hanski I.A., Gilpin M.E. (Eds.), Metapopulation biology: ecology, genetics, and evolution, Academic Press Inc. San Diego, USA, pp. 165–181.

    Google Scholar 

  • Hedrick P.W., Parker J.D. (1997) Evolutionary genetics and genetic variation of haplodiploids and X-lined genes, Annu. Rev. Ecol. Syst. 28, 55–83.

    Article  Google Scholar 

  • Hedrick P.W., Kalinowski S.T. (2000) Inbreeding depression in conservation biology, Annu. Rev. Ecol. Syst. 31, 139–162.

    Article  Google Scholar 

  • Hedrick P.W., Gadau J., Page R.E.J. (2006) Genetic sex determination and extinction, Trends Ecol. Evol. 21, 55–57.

    Article  PubMed  Google Scholar 

  • Heimpel G.E., de Boer J.G. (2008) Sex determination in the Hymenoptera, Annu. Rev. Entomol. 53, 209–230.

    Article  PubMed  CAS  Google Scholar 

  • Henter H.J. (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa, Evolution 57, 1793–1803.

    PubMed  Google Scholar 

  • Herrmann F., Westphal C., Moritz R.F.A., Steffan-Dewenter I. (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes, Mol. Ecol. 16, 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  • Holehouse K.A., Hammond R.L., Bourke A.F.G. (2003) Non-lethal sampling of DNA from bumble bees for conservation genetics, Insectes Soc. 50, 277–285.

    Article  Google Scholar 

  • Holloway A.K., Heimpel G.E., Strand M.R., Antolin M.F. (1999) Survival of diploid males in Bracon sp. near hebetor (Hymenoptera: Braconidae), Ann. Entomol. Soc. Am. 92, 110–116.

    Google Scholar 

  • Jacquard A. (1975) Inbreeding: One word, several meanings, Theor. Popul. Biol. 7, 338–363.

    Article  PubMed  CAS  Google Scholar 

  • Keller L.F., Waller D.M. (2002) Inbreeding effects in wild populations, Trends Ecol. Evol. 17, 230–241.

    Article  Google Scholar 

  • Kerr W.E. (1987) Sex determination in bees. XXI. Number of XO-heteroalleles in a natural population of Melipona compressipes fasciculata (Apidae), Insectes Soc. 34, 274–279.

    Article  Google Scholar 

  • Kerr W.E. (1997) Sex determination in honey bees (Apinae and Meliponinae) and its consequences, Braz. J. Genet. 20, 4.

    Article  Google Scholar 

  • Kim S., Misra A. (2007) SNP genotyping: Technologies and biomedical applications, Annu. Rev. Biomed. Eng. 9, 289–320.

    Article  PubMed  CAS  Google Scholar 

  • Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. (2007) Importance of pollinators in changing landscapes for world crops, Proc. R. Soc. Lond., Ser. B Biol. Sci. 274, 303–313.

    Article  Google Scholar 

  • Knight M.E., Martin A.P., Bishop S., Osborne J.L., Hale R.J., Sanderson R.A., Goulson D. (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species, Mol. Ecol. 14, 1811–1820.

    Article  PubMed  CAS  Google Scholar 

  • Kosior A., Celary W., Olejniczak P., Fijal J., Król W., Solarz W., Plonka P. (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe, Oryx 41, 79–88.

    Article  Google Scholar 

  • Kraus F.B., Weinhold S., Moritz R.F.A. (2008) Genetic structure of drone congregations of the stingless bee Scaptotrigona mexicana, Insectes Soc. 55, 22–27.

    Article  Google Scholar 

  • Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensification, Proc. Natl Acad. Sci. USA 99, 16812–16816.

    Article  PubMed  CAS  Google Scholar 

  • Kremen C., Williams N.M., Aizen M.A., Gemmill-Herren B., LeBuhn G., Minckley R., Packer L., Potts S.G., Roulston T.a., Steffan-Dewenter I., Vazquez D.P., Winfree R., Adams L., Crone E.E., Greenleaf S.S., Keitt T.H., Klein A.-M., Regetz J., Ricketts T.H. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change, Ecol. Lett. 10, 299–314.

    Article  PubMed  Google Scholar 

  • Krieger M.J.B., Ross K.G., Chang C.W., Keller L. (1999) Frequency and origin of triploidy in the fire ant Solenopsis invicta, Heredity 82, 142–150.

    Article  Google Scholar 

  • Kuhlmann M., Else G.R., Dawson A., Quicke D.L.J. (2007) Molecular, biogeographical and phenological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae), Org. Divers. Evol. 7, 155–165.

    Article  Google Scholar 

  • Kukuk P.F., May B. (1990) Diploid males in a primitively eusocial bee, Lasioglossum (Dialictus) zephyrum, Evolution 44, 1522–1528.

    Article  Google Scholar 

  • Lacy R.C. (1993) Vortex: a computer simulation model for population viability analysis, Wildl. Res. 20, 45–64.

    Article  Google Scholar 

  • Lapidge K.L., Oldroyd B.P., Spivak M. (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees, Naturwissenschaften 89, 565–568.

    PubMed  CAS  Google Scholar 

  • Le Conte Y., De Vaublanc G., Crauser D., Jeanne F., Rousselle J.C., Becard J.M. (2007) Honey bee colonies that have survived Varroa destructor, Apidologie 38, 566–572.

    Article  Google Scholar 

  • Leberg P.L., Firmin B.D. (2008) Role of inbreeding depression and purging in captive breeding and restoration programmes, Mol. Ecol. 2008, 334–343.

    Article  Google Scholar 

  • Liebert A.E., Johnson R.N., Switz G.T., Starks P.T. (2004) Triploid females and diploid males: under-reported phenomena in Polistes wasps? Insectes Soc. 51, 205–211.

    Google Scholar 

  • Liebert A.E., Sumana A., Starks P.T. (2005) Diploid males and their triploid offspring in the paper wasp Polistes dominulus, Biol. Lett. 1, 200–203.

    Article  PubMed  Google Scholar 

  • Lopez-Uribe M.M., Almanza M.T., Ordonez M. (2007) Diploid male frequencies in Colombian populations of euglossine bees, Biotropica 39, 299–314.

    Article  Google Scholar 

  • Lozier J.D., Cameron S.A. (2009) Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumble bees Bombus pensylvanicus and B. impatiens in Illinois, Mol. Ecol., doi:10.1111/j.1365.294X.2009.04160x.

  • Luikart G., England P.R. (1999) Statistical analysis of microsatellite DNA data, Trends Ecol. Evol. 14, 253–256.

    Article  PubMed  Google Scholar 

  • Luna M.G., Hawkins B.A. (2004) Effects of Inbreeding Versus Outbreeding in Nasonia vitripennis (Hymenoptera: Pteromalidae), Environ. Entomol. 33, 765–775.

    Article  Google Scholar 

  • Lynch M., Conery J., Burger R. (1995) Mutation accumulation and the extinction of small populations, Am. Nat. 146, 489–518.

    Article  Google Scholar 

  • Lynch M., Walsh B. (1998) Genetics and Analysis of Quantitative Traits, Sinauer Associates Inc., Sunderland, MA, USA.

    Google Scholar 

  • Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.-J., Chen Z., Dewell S.B., Du L., Fierro J.M., Gomes X.V., Godwin B.C., He W., Helgesen S., Ho C.H., Irzyk G.P., Jando S.C., Alenquer M.L.I., Jarvie T.P., Jirage K.B., Kim J.-B., Knight J.R., Lanza J.R., Leamon J.H., Lefkowitz S.M., Lei M., Li J., Lohman K.L., Lu H., Makhijani V.B., McDade K.E., McKenna M.P., Myers E.W., Nickerson E., Nobile J.R., Plant R., Puc B.P., Ronan M.T., Roth G.T., Sarkis G.J., Simons J.F., Simpson J.W., Srinivasan M., Tartaro K.R., Tomasz A., Vogt K.A., Volkmer G.A., Wang S.H., Wang Y., Weiner M.P., Yu P., Begley R.F., Rothberg J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors, Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  • McCorquodale D.B., Owen R.E. (1994) Laying sequence, diploid males and nest usurpation in the leafcutter bee, Megachile rotundata (Hymenoptera: Megachilidae), J. Insect. Behav. 7, 731–738.

    Article  Google Scholar 

  • Michener C.D. (2000) The bees of the world, The Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Michener C.D., Rettenmeyer C.W. (1956) The ethology of Andrena erythronii with comparative data on other species, Univ. Kans. Sci. Bull. 37, 645–684.

    Google Scholar 

  • Minckley R.L., Wcislo W.T., Yanega D., Buchmann S.L. (1994) Behavior and phenology of a specialist bee (Dieunomia) and sunflower (Helianthus) pollen availability, Ecology 75, 1406–1419.

    Article  Google Scholar 

  • Mitchell-Olds T., Willis J.H., Goldstein D.B. (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856.

    Article  PubMed  CAS  Google Scholar 

  • Morin P.A., Luikart G., Wayne R.K. (2004) SNPs in ecology, evolution and conservation, Trends Ecol. Evol. 19, 208–216.

    Article  Google Scholar 

  • Moritz C., Cicero C. (2004) DNA barcoding: promise and pitfalls, PLoS Biol. 2, e279.

    Article  CAS  Google Scholar 

  • Müller A., Diener S., Schnyder S., Stutz K., Sedivy C., Dorn S. (2006) Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee—flower relationships, Biol. Conserv. 130, 604–615.

    Article  Google Scholar 

  • Murray T.E., Fitzpatrick U., Brown M.J.F., Paxton R.J. (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs, Conserv. Genet. 9, 653–666.

    Article  CAS  Google Scholar 

  • Murray T.E., Kuhlmann M., Potts S.G. (2009) Conservation ecology of bees: populations, species and communities, Apidologie 40, 211–236.

    Article  Google Scholar 

  • Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection, BMC Genomics 9, 301.

    Article  PubMed  CAS  Google Scholar 

  • Neumann N.F., Galvez F. (2002) DNA microarrays and toxicogenomics: applications for ecotoxicology? Biotechnol. Adv. 20, 391–419.

    Article  PubMed  CAS  Google Scholar 

  • Nevins J.R., Potti A. (2007) Mining gene expression profiles: expression signatures as cancer phenotypes, Nat. Rev. Genet. 8, 601–609.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R. (2005) Molecular signatures of natural selection, Annu. Rev. Genet. 39, 197–218.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R., Hellmann I., Hubisz M., Bustamante C., Clark A.G. (2007) Recent and ongoing selection in the human genome, Nat. Rev. Genet. 8, 857–868.

    Article  PubMed  CAS  Google Scholar 

  • NRC (2007) Status of pollinators in North America, National Academies Press, Washington, DC.

    Google Scholar 

  • Olesen J.M., Bascompte J., Dupont Y.L., Jordano P. (2007) The modularity of pollination networks, Proc. Natl Acad. Sci. USA 104, 19891–19896.

    Article  PubMed  CAS  Google Scholar 

  • Otterstatter M.C., Thomson J.D. (2008) Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators? PLoS ONE 3, e2771.

    Article  PubMed  CAS  Google Scholar 

  • Owen R.E. (1985) The opportunity for polymorphism and genic variation in social hymenoptera with worker-produced males, Heredity 54, 25–36.

    Article  Google Scholar 

  • Owen R.E., Packer L. (1994) Estimation of the proportion of diploid males in populations of Hymenoptera, Heredity 72, 219–227.

    Article  Google Scholar 

  • Packer L., Owen R.E. (1990) Allozyme variation, linkage disequilibrium and diploid male production in a primitively social bee Augochlorella striata (Hymenoptera: Halictidae), Heredity 65, 241–248.

    Article  Google Scholar 

  • Packer L., Owen R. (2001) Population genetic aspects of pollinator decline, Conserv. Ecol. 5, 4.

    Google Scholar 

  • Packer L., Zayed A., Grixti J.C., Ruz L., Owen R.E., Vivallo F., Toro H. (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees, Conserv. Biol. 19, 195–202.

    Article  Google Scholar 

  • Page R.E. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera), Genetics 96, 263–273.

    PubMed  Google Scholar 

  • Palmer K.A., Oldroyd B.P., Quezada-Euán J.J.G., Paxton R.J., May-Itza W.D.J. (2002) Paternity frequency and maternity of males in some stingless bee species, Mol. Ecol. 11, 2107–2113.

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P., Crozier R.H. (1997) Population biology of social insect conservation, Mem. Mus. Vict. 56, 411–419.

    Google Scholar 

  • Pauw A. (2007) Collapse of a pollination web in small conservation areas, Ecology 88, 1759–1769.

    Article  PubMed  Google Scholar 

  • Paxton R.J. (2005) Male mating behaviour and mating systems of bees: an overview, Apidologie 36, 145–156.

    Article  Google Scholar 

  • Paxton R.J., Thorén P.A., Gyllenstrand N., Tengö J. (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding, Biol. J. Linn. Soc. Lond. 69, 483–502.

    Article  Google Scholar 

  • Paxton R.J., Bego L.R., Shah M.M., Mateus S. (2003) Low mating frequency of queens in the stingless bee Scaptotrigona postica and worker maternity of males, Behav. Ecol. Sociobiol. 53, 174–181.

    Google Scholar 

  • Pfrender M.E., Spitze K., Hicks J., Morgan K., Latta L., Lynch M. (2000) Lack of concordance between genetic diversity estimates at the molecular and quantitative-trait levels, Conserv. Genet. 1, 263–269.

    Article  CAS  Google Scholar 

  • Plowright R.C., Pallett M.J. (1979) Worker-male conflict and inbreeding in bumble bees (Hymenoptera: Apidae), Can. Entomol. 111, 289–294.

    Article  Google Scholar 

  • Quezada-Euán J.J.G., Paxton R.J., Palmer K.A., Itza W.D.M., Tay W.T., Oldroyd B.P. (2007) Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini), Apidologie 38, 247–258.

    Article  CAS  Google Scholar 

  • Ralls K., Ballou J. (1983) Extinction: lessons from zoos, in: Schonewald-Cox C.M., Chambers S.M., MacBryde B., Thomas L. (Eds.), Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, Benjamin/Cummings Menlo Park, CA.

    Google Scholar 

  • Ralls K., Ballou J.D., Templeton A. (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals, Conserv. Biol. 2, 185–193.

    Article  Google Scholar 

  • Reed D.H., Frankham R. (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis, Evolution 55, 1095–1103.

    PubMed  CAS  Google Scholar 

  • Reed D.H., Frankham R. (2003) Correlation between fitness and genetic diversity, Conserv. Biol. 17, 230–237.

    Article  Google Scholar 

  • Ross K.G., Fletcher D.J.C. (1986) Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae), Behav. Ecol. Sociobiol. 19, 283–291.

    Article  Google Scholar 

  • Roubik D.W. (2001) Ups and Downs in Pollinator Populations: When is there a Decline? Conserv. Ecol. 5, 2. [online] http://www.consecol.org/vol5/ iss1/art2 (accessed on 2 February 2009).

  • Roubik D.W., Weigt L.A., Bonilla M.A. (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees, Evolution 50, 931–935.

    Article  Google Scholar 

  • Sabeti P.C., Schaffner S.F., Fry B., Lohmueller J., Varilly P., Shamovsky O., Palma A., Mikkelsen T.S., Altshuler D., Lander E.S. (2006) Positive natural selection in the human lineage, Science 312, 1614–1620.

    Article  PubMed  CAS  Google Scholar 

  • Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W., Hanski I. (1998) Inbreeding and extinction in a butterfly metapopulation, Nature 392, 491–494.

    Article  CAS  Google Scholar 

  • Schena M., Shalon D., Davis R.W., Brown P.O. (1995) Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Hempel P., Schmid-Hempel R., Brunner P.C., Seeman O.D., Allen G.R. (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck, Heredity 99, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Schremph A., Aron S., Heinze J. (2006) Sex determination and inbreeding depresion in an ant with regular sib-mating, Heredity 97, 75–80.

    Article  Google Scholar 

  • Shendure J., Mitra R.D., Varma C., Church G.M. (2004) Advanced sequencing technologies: methods and goals, Nat. Rev. Genet. 5, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds F.J. (1947) Improvement of the sex ratio of a parasite by selection, Can. Entomol. 79, 41–44.

    Article  Google Scholar 

  • Spielman D., Brook B.W., Frankham R. (2004) Most species are not driven to extinction before genetic factors impact them, Proc. Natl Acad. Sci. USA 101, 15261–15264.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R., Luck R.F., Werren J.H. (1992) Genetics of sex determination and the improvement of biological control using parasitoids, Environ. Entomol. 21, 427–435.

    Google Scholar 

  • Stow A., Silberbauer L., Beattie A.J., Briscoe D.A. (2007) Fine-scale genetic structure and firecreated habitat patchiness in the Australian allodapine bee, Exoneura nigrescens (Hymenoptera: Apidae), J. Hered. 98, 60–66.

    Article  PubMed  CAS  Google Scholar 

  • Strange J.P., Knoblett J., Griswold T. (2009) DNA amplification from pin-mounted bumble bees (Bombus) in a museum collection: effects of fragment size and specimen age on successful PCR, Apidologie, DOI: 10.1051/apido/2008070.

  • Strassmann J. (2001) The rarity of multiple mating by females of social Hymenoptera, Insectes Soc. 48, 1–13.

    Article  Google Scholar 

  • Strausberg R.L., Levy S., Rogers Y.-H. (2008) Emerging DNA sequencing technologies for human genomic medicine, Drug Discov. Today 13, 569–577.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N.C., Peruquetti R.C., Del Lama M.A., de Oliveira Campos L.A. (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae), Evolution 55, 1897–1899.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J., Ayabe T., Mitsuhata M., Shimizu I., Ono M. (2008) Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae), Insectes Soc. 55, 43–50.

    Article  Google Scholar 

  • Tavares M.G., Dias L.A.D., Borges A.A., Lopes D.M., Busse A.H.P., Costa R.G., Salomao T.M.F., Campos L.A.D. (2007) Genetic divergence between populations of the stingless bee uruqu amarela (Melipona rufiventris group, Hymenoptera, Meliponini): Is there a new Melipona species in the Brazilian state of Minas Gerais? Genet. Mol. Biol. 30, 667–675.

    Article  CAS  Google Scholar 

  • Templeton A.R., Read B. (1994) Inbreeding: one word, several meanings, much confusion, in: Loeschcke V., Tomiuk J., Jain S.K. (Eds.), Conservation Genetics, Birkhäuser-Verlag Basel, Switzerland, pp. 91–106.

    Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.

    Article  CAS  Google Scholar 

  • Twyman R.M. (2004) SNP discovery and typing technologies for pharmacogenomics, Curr. Top. Med. Chem. 4, 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  • Vamosi J.C., Knight T.M., Steets J.A., Mazer S.J., Burd M., Ashman T.-L. (2006) Pollination decays in biodiversity hotspots, Proc. Natl Acad. Sci. USA 103, 956–961.

    Article  PubMed  CAS  Google Scholar 

  • van ’t Veer L.J., Bernards R. (2008) Enabling personalized cancer medicine through analysis of geneexpression patterns, Nature 452, 564–570.

    Article  CAS  Google Scholar 

  • van Wilgenburg E., Driessen G., Beukeboom L. (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front. Zool. 3, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Vilas C., San Miguel E., Amaro R., Garcia C. (2006) Relative contribution of inbreeding depression and eroded adaptive diversify to extinction risk in small populations of shore Campion, Conserv. Biol. 20, 229–238.

    Article  PubMed  Google Scholar 

  • Wadlow R., Ramaswamy S. (2005) DNA microarrays in clinical cancer research, Curr. Mol. Med. 5, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Wandeler P., Hoeck P.E.A., Keller L.F. (2007) Back to the future: museum specimens in population genetics, Trends Ecol. Evol. 22, 634–642.

    Article  PubMed  Google Scholar 

  • Wang J. (2005) Estimation of effective population sizes from data on genetic markers, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1395–1409.

    Article  PubMed  CAS  Google Scholar 

  • Werren J.H. (1993) The evolution of inbreeding in haplodiploid organisms, in: Thornhill N.W. (Ed.), The natural history of inbreeding and outbreeding: theoretical and empirical perspectives, The University of Chicago Press Chicago, pp. 42–59.

    Google Scholar 

  • Westemeier R.L., Brawn J.D., Simpson S.A., Esker T.L., Jansen R.W., Walk J.W., Kershner E.L., Bouzat J.L., Paige K.N. (1998) Tracking the longterm decline and recovery of an isolated population, Science 282, 1695–1698.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield C.W., Band M.R., Bonaldo M.F., Kumar C.G., Liu L., Pardinas J.R., Robertson H.M., Soares M.B., Robinson G.E. (2002) Annotated Expressed Sequence Tags and cDNA Microarrays for Studies of Brain and Behavior in the Honey Bee, Genome Res. 12, 555–566.

    Article  PubMed  Google Scholar 

  • Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice Out of Africa: Ancient and Recent Expansions of the Honey Bee, Apis mellifera, Science 314, 642–645.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock M.C., Barton N.H. (1997) The effective size of a subdivided population, Genetics 146, 427–441.

    PubMed  CAS  Google Scholar 

  • Widmer A., Schmid-Hempel P. (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae), Mol. Ecol. 8, 387–398.

    Article  PubMed  Google Scholar 

  • Wilfert L., Gadau J., Baer B., Schmid-Hempel P. (2007 a) Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris, Mol. Ecol. 16, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L., Gadau J., Schmid-Hempel P. (2007b) The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees, Evolution 61, 804–815.

    Article  PubMed  Google Scholar 

  • Williams N., Minckley R., Silviera F. (2001) Variation in native bee faunas and its implications for detecting community changes, Conserv. Ecol. 5, 7.

    Google Scholar 

  • Woyke J. (1979) Sex determination in Apis cerana indica, J. Apic. Res. 18, 122–127.

    Google Scholar 

  • Wu Z., Hopper K.R., Ode P.J., Fuester R.W., Chen J., Heimpel G.E. (2003) Complementary Sex Determination In Hymenopteran Parasitoids And Its Implications For Biological Control., Entomol. Sin. 10, 81–93.

    Google Scholar 

  • Yokoyama S., Nei M. (1979) Population dynamics of sex-determining alleles in honey bees and selfincompatibility alleles in plants, Genetics 91, 609–626.

    PubMed  CAS  Google Scholar 

  • Zayed A. (2004) Effective population size in Hymenoptera with complementary sex determination, Heredity 93, 627–630.

    Article  PubMed  CAS  Google Scholar 

  • Zayed A., Packer L. (2001) High levels of diploid male production in a primitively eusocial bee (Hymenoptera: Halictidae), Heredity 87, 631–636.

    Article  PubMed  CAS  Google Scholar 

  • Zayed A., Packer L. (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations, Proc. Natl Acad. Sci. USA 102, 10742–10746.

    Article  PubMed  CAS  Google Scholar 

  • Zayed A., Packer L. (2007) The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae), Heredity 99, 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Zayed A., Whitfield C.W. (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera, Proc. Natl Acad. Sci. USA 105, 3421–3426.

    Article  PubMed  CAS  Google Scholar 

  • Zayed A., Roubik D.W., Packer L. (2004) Use of diploid male frequency data as an indicator of pollinator decline, Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, S9-S12.

    Article  Google Scholar 

  • Zayed A., Packer L., Grixti J.C., Ruz L., Toro H., Owen R.E. (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation, Conserv. Genet. 6, 1017–1026.

    Article  Google Scholar 

  • Zayed A., Constantin S.A., Packer L. (2007) Successful biological invasion despite a severe genetic load, PLoS ONE 2, e868.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amro Zayed.

Additional information

Manuscript editor: Robert Paxton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zayed, A. Bee genetics and conservation. Apidologie 40, 237–262 (2009). https://doi.org/10.1051/apido/2009026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009026

Navigation