Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Feasibility of using unsupervised learning, artificial neural networks for the condition monitoring of electrical machines

Feasibility of using unsupervised learning, artificial neural networks for the condition monitoring of electrical machines

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The feasibility of using an artificial network for identifying faults in induction motors has been demonstrated previously by the authors. In this work, the network was used as a learning and pattern recognition device, and was able to successfully associate input signal patterns with appropriate machine states. The neural network used was the multilayered perceptron (MLP), trained by a backpropagation algorithm. However, MLP lacks flexibility since it requires fully labelled input-output pairs (i.e. training of the network is supervised). This limitation can be removed by the use of an alternative approach, using unsupervised methods, such as the Kohonen feature maps (KFM) technique. The results of applying KFM to condition monitoring of electrical drives are reported in this paper, and they reveal the practical advantages of unsupervised systems, which include the ability to learn and produce classifications without supervision. Because of the natural parallel architecture of neural networks, they are also ideally suited to the use of multiple transducer inputs, which can greatly enhance the reliability of decisions made regarding the state of machine performance or condition.

http://iet.metastore.ingenta.com/content/journals/10.1049/ip-epa_19941263
Loading

Related content

content/journals/10.1049/ip-epa_19941263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address