Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique

Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper presents a new design for nonlinear decoupled control of a linear-induction-motor (LIM) servo-drive. An ideal feedback linearisation control (IFLC) system is first adopted in order to decouple the thrust force and the flux amplitude of the LIM. However, the control performance of the LIM is influenced seriously by the uncertainties of the plant, such as electrical and mechanical parameter variation, external force disturbance and unmodelled dynamics in practical applications. Hence, to increase the robustness of the LIM drive for high-performance applications, a sliding-mode feedback linearisation control (SMFLC) system, that comprises a sliding-mode flux controller and a sliding-mode position controller, is proposed to decouple the thrust force and the flux amplitude of the LIM. The control laws of the SMFLC system are derived in the sense of the Lyapunov stability theorem, such that the asymptotic stability of the control system can be guaranteed under the occurrence of system uncertainties. Moreover, to relax the requirement of the secondary flux in the SMFLC system, an adaptive flux observer is proposed to estimate the secondary flux, considering all possible uncertainty in practical applications. In addition, the effectiveness of the proposed control scheme is verified by some simulated results.

References

    1. 1)
      • G. BUCCI , S. MEO , A. OMETTO , M. SCARANO . The control of LIM by a generalization of standard vector techniques. Proc. IEEE, IASC , 623 - 626
    2. 2)
      • D.W. Novotny , T.A. Lipo . (1996) Vector control and dynamics of AC drives.
    3. 3)
      • W.J. WANG , C.C. WANG . Composite adaptive position controller for induction motor using feedback linearisation. IEE Proc., Control Theory Appl. , 1 , 25 - 32
    4. 4)
      • F.J. LIN , H.M. SU , H.P. CHEN . Induction motor servo drive with adaptive rotor time-constant estimation. IEEE Trans. Aerosp. Electron. Syst. , 1 , 224 - 234
    5. 5)
      • Z. ZHANG , G.E. DAWSON , T.R. EASTHAM . Microcontroller based on-line identification of variable parameters in induction motors. Electr. Mach. Power Syst. , 353 - 360
    6. 6)
      • J.C. HUNG . (1996) Total invariant VSC for linear and nonlinear systems, A seminar given at Harbin Institute of Technology, Harbin, China, 1996..
    7. 7)
      • G.S. KIM , I.J. HA , M.S. KO . Control of induction motors for both high dynamic performance and high power efficiency. IEEE Trans. Ind. Electron. , 4 , 323 - 333
    8. 8)
      • T. FURUHASHI , S. SANGWONGWANICH , S. OKUMA . A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer. IEEE Trans. Ind. Electron. , 2 , 89 - 95
    9. 9)
      • W. GAO , J.C. HUNG . Variable structure control for nonlinear systems: a new approach. IEEE Trans. Ind. Electron. , 2 - 22
    10. 10)
      • J.J.E. Slotine , W. Li . (1991) Applied nonlinear control.
    11. 11)
      • T. RAUMER , J.M. DION , L. DUGARD , J.L. THOMAS . Applied nonlinear control of an induction motor using digital signal processing. IEEE Trans. Control Syst. Technol. , 4 , 327 - 335
    12. 12)
      • C.C. CHAN , H. WANG . An effective method for rotor resistance identification for high-performance induction motor vector control. IEEE Trans. Ind. Electron. , 6 , 477 - 482
    13. 13)
      • R.J. WAI . Adaptive sliding-mode control for induction servo motor drive. IEE Proc., Electr. Power Appl.
    14. 14)
      • J.L. Faa , J.W. Rong , C.L. Pao . Robust speed sensorless induction motor drive. IEEE Trans. Aerosp. Electron. Syst. , 2 , 566 - 578
    15. 15)
      • I. TAKAHASHI , Y. IDE . Decoupling control of thrust and attractive force of a LIM using a space vector control inverter. IEEE Trans. Ind. Appl. , 1 , 161 - 167
    16. 16)
      • K.J. Astrom , B. Wittenmark . (1995) Adaptive Control.
    17. 17)
      • R. MARINO , S. PERESADA , P. VALIGI . Adaptive input-output linearizing control of induction motors. IEEE Trans. Autom. Control , 2 , 208 - 221
    18. 18)
      • M. BODSON , J. CHIASSON , R. NOVOTNAK . High-performance induction motor control via input-output linearisation. IEEE Control Syst. Mag. , 4 , 25 - 33
    19. 19)
      • I. Boldea , S.A. Nasar . (1997) Linear electric actuators and generators.
    20. 20)
      • Z. ZHANG , T.R. EASTHAM , G.E. DAWSON . Peak thrust operation of linear induction machines from parameter identification. Proc. IEEE, IASC , 375 - 379
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20010415
Loading

Related content

content/journals/10.1049/ip-cta_20010415
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address