Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Approximating stochastic biochemical processes with Wasserstein pseudometrics

Approximating stochastic biochemical processes with Wasserstein pseudometrics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modelling stochastic processes inside the cell is difficult due to the size and complexity of the processes being investigated. As a result, new approaches are needed to address the problems of model reduction, parameter estimation, model comparison and model invalidation. Here, the authors propose addressing these problems by using Wasserstein pseudometrics to quantify the differences between processes. The method the authors propose is applicable to any bounded continuous-time stochastic process and pseudometrics between processes are defined only in terms of the available outputs. Algorithms for approximating Wasserstein pseudometrics are developed from experimental or simulation data and demonstrate how to optimise parameter values to minimise the pseudometrics. The approach is illustrated with studies of a stochastic toggle switch and of stochastic gene expression in E. coli.

References

    1. 1)
      • A. Vershik . Kantorovich metric: initial history and little-known applications. J. Math. Sci. , 4 , 1410 - 1417
    2. 2)
      • J. Shao , D. Tu . (1995) The Jackknife and bootstrap.
    3. 3)
      • V. Shahrezaei , P.S. Swain . The stochastic nature of biochemical networks. Cur. Opin. Biotechnol. , 4 , 369 - 374
    4. 4)
      • A.N. Shiryayev . (1984) Probability.
    5. 5)
      • R.K. Ahuja , T.L. Magnanti , J.B. Orlin . (1993) Network flows: theory, algorithms, and applications.
    6. 6)
      • Singh, A., Hespanha, J.P.: `Scaling of stochasticity in gene cascades', Proc. 2008 American Control Conf., 2008, p. 2780–2785.
    7. 7)
      • V.N. Vapnik , A.Y. Chervonenkis . On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. , 2 , 264 - 280.
    8. 8)
      • R. Dudley . (2002) Real analysis and probability.
    9. 9)
      • J. Kleinberg , E. Tardos . (2006) Algorithm design.
    10. 10)
      • T. Gardner , C. Cantor , J. Collins . Construction of a genetic toggle switch in Escherichia coli. Nature , 339 - 242
    11. 11)
      • N.A. Sinitsyn , N. Hengartner , I. Nemenman . Adiabatic coarse-graining and simulations of stochastic biochemical networks. Proc. Natl Acad. Sci. , 26 , 10546 - 10551.
    12. 12)
      • J. Mettetal , A. van Oudenaarden . Necessary noise. Science , 5837 , 463 - 464
    13. 13)
      • P. de Atauri , D. Orrell , S. Ramsey , H. Bolouri . Evolution of ‘design’ principles in biochemical networks. IEE Syst. Biol. , 1 , 28 - 40
    14. 14)
      • T. Kaijser . Computing the kantorovich distance for images. J. Math. Imaging Vis. , 173 - 191
    15. 15)
      • D.T. Gillespie . Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. , 2340 - 2360
    16. 16)
      • M.B. Elowitz , A.J. Levine , E.D. Siggia , P.S. Swain . Stochastic gene expression in a single cell. Science , 5584 , 1183 - 1186
    17. 17)
      • M. Grant , S. Boyd , V. Blondel , S. Boyd , H. Kimura . (2008) Graph implementations for non-smooth convex programs’. Control and Information Sciences, Recent Advances in learning and control (a tribute to M. Vidyasagar).
    18. 18)
      • A.L. Gibbs , F.E. Su . On choosing and bounding probability metrics. Int. Stat. Rev. , 3 , 419 - 435
    19. 19)
      • B. Munsky , M. Khammash . Transient analysis of stochastic switches and trajectories with applications to gene regulatory networks. IET Syst. Biol. , 5 , 323 - 333.
    20. 20)
      • Georgiev, D., Klavins, E.: `Model discrimination of polynomial systems via stochastic inputs', Proc. 47th IEEE Conf. on Decision and Control, December 2008, p. 3323–3329.
    21. 21)
      • L. de Alfaro , R. Majumdar , V. Raman , M. Stoelinga . Game relations and metrics. Proc. IEEE Symp. Log. Comput. Sci. , 99 - 108
    22. 22)
      • N.D. Price , I. Shmulevich . Biochemical and statistical network models for systems biology. Cur. Opin. Biotechnol. , 4 , 365 - 370
    23. 23)
      • H. McAdams , A. Arkin . It's a noisy business! genetic regulation at the nanomolar scale. Trends Genetics , 2 , 65 - 69
    24. 24)
      • F. van Breugel , J. Worrell . Approximating and computing behavioural distances in probabilistic transition systems. J. Theor. Comput. Sci. , 373 - 385
    25. 25)
      • S. Cabello , P. Giannopoulos , C. Knauer , G. Rote . Matching points sets with respect to the earth mover distance. Comput. Geom. , 2 , 118 - 133
    26. 26)
      • B. Munsky , M. Khammash . The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. , 4
    27. 27)
      • P.S. Swain , M.B. Elowitz , E.D. Siggia . Intrinsic and extrinsic contributions to stochasticity in gene expression. Science , 20 , 12795 - 12800
    28. 28)
      • A. Arkin , J. Ross , H. McAdams . Stochastic kinetic analysis of developmental pathway bifurcation in phage infected escherichia coli cells. Genetics , 1633 - 1648
    29. 29)
      • D.M. Mason . Some characterizations of almost sure bounds for weighted multidimensional empirical distributions and a Glivenko–Cantelli theorem for sample quantiles. Probab. Theory Relat. Fields , 4 , 505 - 513
    30. 30)
      • S. Vallender . Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Appl. , 4 , 784 - 786
    31. 31)
      • J. Spall . (2003) Introduction to stochastic search and optimization: estimation, simulation, and control.
    32. 32)
      • D.T. Gillespie . Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. , 1 , 35 - 55
    33. 33)
      • Thorsley, D., Klavins, E.: `Model reduction of stochastic processes using Wasserstein pseudometrics', Proc. 2008 American Control Conf., 2008, p. 1374–1381.
    34. 34)
      • J. Brandt , C. Cabrelli , U. Molter . An algorithm for the computation of the hutchinson distance. Inf. Process. Lett. , 2 , 113 - 117
    35. 35)
      • J. Desharnais , V. Gupta , R. Jagadeesan , P. Panangaden . Metrics for labelled Markov processes. J. Theor. Comput. Sci. , 323 - 354
    36. 36)
      • N. van Kampen . (2001) Stochastic processes in physics and chemistry.
    37. 37)
      • Papachristodoulou, A., El-Samad, H.: `Algorithms for discriminating between biochemical reaction network models: towards systematic experimental design', American Control Conf., July 2007, p. 2714–2719, Acc'07.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0039
Loading

Related content

content/journals/10.1049/iet-syb.2009.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address