Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Non-adaptive multiple-input, multiple-output radar techniques for reducing clutter

Non-adaptive multiple-input, multiple-output radar techniques for reducing clutter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multiple-input, multiple-output (MIMO) radars enhance performance by transmitting and receiving coded waveforms from multiple locations. This paper describes MIMO techniques that can be used to improve radar performance, especially in airborne Ground Moving Target Indicator (GMTI) applications. The authors begin by showing how MIMO techniques can lower airborne radar clutter to noise ratios (CNRs). This results in smaller losses when observing stationary or low-velocity targets. Next, the authors consider the implementation of MIMO radar modes using electronically scanned arrays (ESAs). Specifically, the authors show how MIMO techniques, applied to subarray-based ESAs, can cause high grating lobes and/or reduced search rates. To address this problem, the authors describe new space–time waveform coding techniques that can be used to improve performance. Two space–time waveform encoding approaches are proposed: (i) an overlapped virtual transmit subarray approach, and (ii) a beamspace MIMO approach. A third approach, involving conventional MIMO waveforms and irregular subarrays, is also briefly considered.

References

    1. 1)
      • White, L.B., Ray, P.S.: `Signal design for MIMO diversity systems', Proc. Asilomar Conf. Signals, Systems, Comput., 2004, 1, p. 973–977.
    2. 2)
      • Rabideau, D.J., Parker, P.: `Ubiquitous MIMO multifunction digital array radar', Proc. Asilomar Conf. Signals, Systems, Comput., 2003, 1, p. 1057–1064.
    3. 3)
      • Wu, Y., Tang, J., Peng, Y.: `Analysis on rank of channel matrix for monostatic MIMO radar system', Proc. CIE Int. Conf. Radar, 2006, p. 1–4.
    4. 4)
    5. 5)
      • Ward, J.: `Space–time adaptive processing for airborne radar', TR-1015, Tech., 13 December 1994, MIT Lincoln Laboratory.
    6. 6)
      • Forsythe, K.W., Bliss, D.W.: `Waveform correlation and optimization issues for MIMO radar', Proc. Asilomar Conf. Signals, Systems, Comput., 2005, p. 1306–1310.
    7. 7)
      • Herd, J.S., Duffy, S.M., Steyskal, H.: `Design considerations and results for an overlapped subarray radar antenna', Proc. IEEE Aerospace Conf., 2005, p. 1087–1092.
    8. 8)
      • Nickel, U.R.O.: `Properties of digital beamforming with subarrays', Proc. CIE Int. Conf. Radar, 2006, p. 1–5.
    9. 9)
      • Robey, F.C., Coutts, S., Weikle, D.: `MIMO radar theory and experimental results', Proc. Asilomar Conf. Signals, Systems, Comput., 2004, 1, p. 300–304.
    10. 10)
      • Sammartino, P.F., Baker, C.J., Griffiths, H.D.: `Target model effects on MIMO radar performance', Proc. ICASSP, 2006, 5, p. 1129–1132.
    11. 11)
      • Fishler, E., Haimovich, A.: `MIMO radar: an idea whose time has come', Proc. IEEE Radar Conf., 2004, p. 71–78.
    12. 12)
      • Forsythe, K.W., Bliss, D.W., Fawcett, G.S.: `Multiple-input multiple-output (MIMO) radar: performance issues', Proc. Asilomar Conf. Signals, Systems, Comput., 2004, 1, p. 310–315.
    13. 13)
      • Sammartino, P.F., Baker, C.J., Griffiths, H.D.: `MIMO radar performance in clutter environment', Proc. CIE Int. Conf. Radar, 2006, p. 1–4.
    14. 14)
      • Bliss, D.W., Forsythe, K.W.: `Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution', Proc. Asilomar Conf. Signals, Systems, Comput., 2003, 1, p. 54–59.
    15. 15)
      • M.I. Skolnik . (1990) Radar handbook.
    16. 16)
      • Dai, X.-Z., Xu, J., Peng, Y.-N.: `A new method of improving the weak target detection performance based on the MIMO radar', Proc. CIE Int. Conf. Radar, 2006, p. 1–4.
    17. 17)
      • D.J. Rabideau , P. Parker . (2003) Ubiquitous MIMO multifunction digital array radar   and the role of time-energy management in radar.
    18. 18)
      • Tabrikian, J.: `Barankin bounds for target localization by MIMO radars', Proc. IEEE Workshop Sensor Array & Multichannel Signal Processing, 2006, p. 278–281.
    19. 19)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2008.0140
Loading

Related content

content/journals/10.1049/iet-rsn.2008.0140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address