Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Biochemical networks with uncertain parameters

Biochemical networks with uncertain parameters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the ‘dependence graph’, to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.

References

    1. 1)
      • D. Krewski , Y. Wang , S. Bartlett , K. Krishnan . Uncertainty, variability, and sensitivity in physiological pharmacokinetic models. J. Biopharm. Stat. , 3 , 245 - 271
    2. 2)
      • R. Heinrich , S. Schuster . (1996) The regulation of cellular systems.
    3. 3)
      • P.S. Swain , M.B. Elowitz , E.D. Siggia . Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS , 20
    4. 4)
      • N. Barkai , S. Leibler . Robustness in simple biochemical networks. Nature , 913 - 917
    5. 5)
      • R. Steuer , J. Kurths , O. Fiehn , W. Weckwerth . Observing and interpreting correlations in metabolomics networks. Bioinformatics , 8 , 1019 - 1026
    6. 6)
      • D.A. Fell . Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. , 313 - 330
    7. 7)
      • I. Schomburg . BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. , D431 - 433
    8. 8)
      • M. Tanaka . Extraction of a thermodynamic property for biochemical reactions in the metabolic pathway. Genome Informatics , 370 - 371
    9. 9)
      • E. Klipp , R. Herwig , A. Kowald , C. Wierling , H. Lehrach . (2005) Systems biology in practice. Concepts, implementation, and application.
    10. 10)
      • A. Gelman , J.B. Carlin , H.S. Stern , D.B. Rubin . (2004) Bayesian data analysis.
    11. 11)
      • P.D. Karp . The EcoCyc database. Nucleic Acids Res. , 1 , 56 - 58
    12. 12)
      • B.P. Ingalls , H.M. Sauro . Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. , 1 , 23 - 36
    13. 13)
      • A. Varma , B.O. Palsson . Metabolic capabilities of Escherichia Coli: I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. , 477 - 502
    14. 14)
      • J.R. Small , D. Fell . Metabolic control analysis. sensitivity of control coefficients to elasticities. Eur. J. Biochem. , 413 - 420
    15. 15)
      • W. Liebermeister . Response to temporal parameter fluctuations in biochemical networks. J. Theor. Biol. , 3 , 423 - 438
    16. 16)
      • S. Thomas , D.A. Fell . Metabolic control analysis: sensitivity of control coefficients to experimentally determined variables. J. Theor. Biol. , 175 - 200
    17. 17)
      • T. Ideker , V. Thorsson , J.A. Ranish , R. Christmas , J. Buhler , J.K. Eng , R. Bumgarner , D.R. Goodlett , R. Aebersold , L. Hood . Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science , 929 - 934
    18. 18)
      • R.N. Goldberg . Thermodynamics of enzyme-catalyzed reactions: Part 6—1999 update. J. Phys. Chem. Ref. Data
    19. 19)
      • N. Blüthgen , H. Herzel . How robust are switches in intracellular signaling cascades?. J. Theor. Biol. , 3 , 293 - 300
    20. 20)
    21. 21)
      • S. Schuster , D.A. Fell , T. Dandekar . A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. , 326 - 332
    22. 22)
      • E. Klipp , W. Liebermeister , C. Wierling . Inferring dynamic properties of biochemical reaction networks from structural knowledge. Genome Informatics , 1 , 125 - 137
    23. 23)
      • (2003) CSHL Symposium 2003, The Genome Knowledgebase: A Resource for Biologists and Bioinformaticists.
    24. 24)
      • S. Petersen , E.v. Lieres , A.A. de Graaf , H. Sahm , W. Wiechert . (2004) Metabolic engineering in the post genomic era, A multi-scale approach for the predictive modeling of metabolic regulation.
    25. 25)
      • E.K. Ainscow , M.D. Brand . Errors associated with metabolic control analysis. Application of Monte-Carlo simulation of experimental data. J. Theor. Biol. , 223 - 233
    26. 26)
      • J. Stelling , U. Sauer , Z. Szallasi , F.J. Doyle , J. Doyle . Robustness of cellular functions. Cell , 675 - 685
    27. 27)
      • R. Krüger , R. Heinrich . Model reduction and analysis of robustness for the Wnt/β-Catenin signal transduction pathway. Genome Informatics , 1 , 138 - 148
    28. 28)
      • H. Kitano . Systems biology: a brief overview. Science , 5560 , 1662 - 1664
    29. 29)
      • Ahrend, P.: `The multivariate Gaussian distribution', Technical, 2004.
    30. 30)
      • C.J. Krieger . MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. , D438 - 442
    31. 31)
      • K.S. Brown , J.P. Sethna . Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E , 021904 - 1
    32. 32)
      • S.P. Gygi . Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. , 3 , 1720 - 1730
    33. 33)
      • M. Kanehisa , S. Goto . The KEGG databases at genomenet. Nucleic Acids Res. , 42 - 46
    34. 34)
      • R. Heinrich , B.G. Neel , T.A. Rapoport . Mathematical models of protein kinase signal transduction. Mol. Cell. , 5 , 957 - 970
    35. 35)
      • S. Schuster , S. Klamt . Use of network analysis of metabolic systems in bioengineering. Bioproc. Biosyst. Eng. , 363 - 372
    36. 36)
      • J. Paulsson . Summing up the noise in gene networks. Nature
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20045033
Loading

Related content

content/journals/10.1049/ip-syb_20045033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address