Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Exploring mechanisms of oscillations in p53 and nuclear factor-κB systems

Exploring mechanisms of oscillations in p53 and nuclear factor-κB systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A number of regulatory networks have the potential to generate sustained oscillations of irregular amplitude, but well conserved period. Single-cell experiments revealed that in p53 and nuclear factor (NF)-κB systems the oscillation period is homogenous in cell populations, insensitive to the strength of the stimulation, and is not influenced by the overexpression of p53 or NF-κB transcription factors. We propose a novel computational method of validation of molecular pathways models, based on the analysis of sensitivity of the oscillation period to the particular gene(s) copy number and the level of stimulation. Using this method, the authors demonstrate that existing p53 models, in which oscillations are borne at a saddle-node-on-invariant-circle or subcritical Hopf bifurcations (characteristic for systems with interlinked positive and negative feedbacks), are highly sensitive to gene copy number. Hence, these models cannot explain existing experiments. Analysing NF-κB system, the authors show the importance of saturation in transcription of the NF-κB inhibitor IκBα. Models without saturation predict that the oscillation period is a rapidly growing function of total NF-κB level, which is in disagreement with experiments. The study supports the hypothesis that oscillations of robust period are based on supercritical Hopf bifurcation, characteristic for dynamical systems involving negative feedback and time delay. We hypothesise that in the p53 system, the role of positive feedback is not sustaining oscillations, but terminating them in severely damaged cells in which the apoptotic programme should be initiated.

References

    1. 1)
      • S.M. Mendrysa , M.K. McElwee , J. Michalowski , K.A. O'Leary , K.M. Young , M.E. Perry . Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol. Cell. Biol. , 462 - 473
    2. 2)
      • L. Ma , J. Wagner , J.J. Rice , W. Hu , A.J. Levine , G.A. Stolovitzky . A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA , 14266 - 14271
    3. 3)
      • T. Lipniacki , B. Hat , J.R. Faeder , W.S. Hlavacek . Stochastic effects and bistability in T cell receptor signaling. J. Theor. Biol. , 110 - 122
    4. 4)
      • A.R. Brasier . The NF-κB regulatory networks. Cardiovasc. Toxicol. , 111 - 130
    5. 5)
      • S.L. Harris , A.J. Levine . The p53 pathway: positive and negative feedback loops. Oncogene , 2899 - 2908
    6. 6)
      • D. Longo , J. Hasty . Dynamics of single-cell gene expression. Mol. Sys. Biol. , 64
    7. 7)
      • N. Geva-Zatorsky , N. Rosenfeld , S. Itzkovitz . Oscillations and variability in the p53 system. Mol. Syst. Biol.
    8. 8)
      • E. Batchelor , C.S. Mock , I. Bhan , A. Loewer , G. Lahav . Recurrent initiation: a mechanisms for triggering p53 pulses in response to DNA damage. Mol. Cell , 277 - 289
    9. 9)
      • A. Hoffmann , A. Levchenko , M.L. Scott , D. Baltimor . The IκB – NF-κB signaling module: temporal control and selective gene activation. Science , 1241 - 1245
    10. 10)
      • T.Y.-C. Tsai , Y.S. Choi , W. Ma , J.R. Pomerening , C. Tang , J.E. Ferrel . Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science , 126 - 129
    11. 11)
      • A. Hoffmann , D. Baltimore . Circuitry of nuclear κB factor signaling. Immunol. Rev. , 171 - 186
    12. 12)
      • T. Lipniacki , P. Paszek , A.R. Brasier , B. Luxon , M. Kimmel . Stochastic regulation in early immune response. Biophys. J. , 725 - 742
    13. 13)
      • D. Barken , C.J. Wang , J. Kearns , R. Cheong , A. Hoffmann , A. Levchenko . Comment on ‘Oscillations in NF-κB signaling control the dynamics of gene expression. Science
    14. 14)
      • J. Alt , T.C. Greiner , J.L. Cleveland , C.M. Eischen . Mdm2 haploinsufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J. , 1442 - 145
    15. 15)
      • S. Wiggins . (1990) Introduction to applied nonlinear dynamical systems and chaos.
    16. 16)
      • L. Sun , G. Yang , M. Zaidi , J. Iqbal . TNF-induced gene expression oscillates in time. Biochem. Biophys. Res. Commun.
    17. 17)
      • B. Hat , P. Paszek , M. Kimmel , K. Piechor , T. Lipniacki . How the number of alleles influences gene autoregulation. J. Stat. Phys. , 511 - 533
    18. 18)
      • T. Lipniacki , K. Puszynski , P. Paszek , A.R. Brasier , M. Kimmel . Single TNFα trimers mediating NF-κB activation: Stochastic robustness of NF-κB signaling. BMC Bioinform. , 376
    19. 19)
      • H. Li , X. Lin . Positive and negative signaling components involved in TNFα-induced NF-κB activation. Cytokine , 1 - 8
    20. 20)
      • S.L. Werner , D. Barken , A. Hoffmann . Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science , 1857 - 1861
    21. 21)
      • D.E. Nelson , C.A. Horton , V. See . Response to comment on Oscillations in NF-κB signaling control the dynamics of gene expression. Science
    22. 22)
      • T. Lipniacki , M. Kimmel . Deterministic and stochastic models of NF-κB pathway. Cardiovasc. Toxicol. , 215 - 234
    23. 23)
      • K. Puszynski , B. Hat , T. Lipniacki . Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol. , 452 - 465
    24. 24)
      • E.G. Lee , D.L. Boone , S. Chai . Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science , 2350 - 2354
    25. 25)
      • J. Stark , C. Chan , A.J.T. George . Oscillations in the immune system. Immunol. Rev. , 213 - 231
    26. 26)
      • J.J. Tyson . Another turn for p53. Mol. Sys. Biol.
    27. 27)
      • D.E. Nelson , A.E.C. Ihekwaba , M. Elliot . Oscillations in NF-κB signaling control the dynamics of gene expression. Science , 704 - 708
    28. 28)
      • R. Cheong , A. Hoffmann , A. Levchenko . Understanding NF-κB signaling via mathematical modeling. Mol. Sys. Biol. , 192
    29. 29)
      • A. Ciliberto , B. Novak , J.J. Tyson . Steady states and oscillations in the p53/Mdm2 network. Cell Cycle , 488 - 493
    30. 30)
      • T. Lipniacki , P. Pastek , A. Brasier , B. Luxon , M. Kimmel . Mathematical model of NF-κB regulatory module. J. Theor. Biol. , 195 - 215
    31. 31)
      • J. Wagner , L. Ma , J.J. Rice , W. Hu , A.J. Levine , G.A. Stolovitzky . p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. IEE Proc. Syst. Biol. , 109 - 118
    32. 32)
      • R.L. Bar-Or , R. Maya , A. Lee , L.A. Segel , U. Alon , A.J. Levine , M. Oren . Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA , 11250 - 11255
    33. 33)
      • T. Zhang , P. Brazhnik , J.J. Tyson . Exploring mechanisms of the DNA-damage response. Cell Cycle , 85 - 93
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0156
Loading

Related content

content/journals/10.1049/iet-syb.2008.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address