Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Reflections on the NASA MDP data sets

Reflections on the NASA MDP data sets

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Software — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Background: The NASA metrics data program (MDP) data sets have been heavily used in software defect prediction research. Aim: To highlight the data quality issues present in these data sets, and the problems that can arise when they are used in a binary classification context. Method: A thorough exploration of all 13 original NASA data sets, followed by various experiments demonstrating the potential impact of duplicate data points when data mining. Conclusions: Firstly researchers need to analyse the data that forms the basis of their findings in the context of how it will be used. Secondly, the bulk of defect prediction experiments based on the NASA MDP data sets may have led to erroneous findings. This is mainly because of repeated/duplicate data points potentially causing substantial amounts of training and testing data to be identical.

References

    1. 1)
      • Williams, C., Spacco, J.: `SZZ revisited: verifying when changes induce fixes', Proc. 2008 Workshop on Defects in Large Software Systems. DEFECTS’08, 2008, New York, USA, p. 32–36.
    2. 2)
    3. 3)
    4. 4)
      • Menzies, T., Stefano, J.S.D., Orrego, A., Chapman, R.: `Assessing predictors of software defects', Proc. Workshop on Predictive Software Models, 2004.
    5. 5)
      • Jiang, Y., Cukic, B., Menzies, T.: `Fault prediction using early lifecycle data', 18thIEEE Int. Symp. on Software Reliability, 2007. ISSRE’07, 2007, p. 237–246.
    6. 6)
      • Singh, Y., Kaur, A., Malhotra, R.: `Predicting software fault proneness model using neural network', Proc. Ninth Int. Conf. on Product-Focused Software Process Improvement. PROFES’08, 2008, Berlin, Heidelberg, p. 204–214.
    7. 7)
      • Y. Ma , L. Guo , B. Cukic . (2006) A statistical framework for the prediction of fault-proneness, Advances in machine learning application in software engineering.
    8. 8)
    9. 9)
      • Cieslak, D.A., Chawla, N.V., Striegel, A.: `Combating imbalance in network intrusion datasets', 2006 IEEE Int. Conf. Granular Computing, 2006, p. 732–737.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • Kim, S., Zimmermann, T., Pan, K., Whitehead, E.J.J.: `Automatic identification of bug-introducing changes', ASE'06: Proc. 21st IEEE/ACM Int. Conf. on Automated Software Engineering, 2006, Washington, DC, USA, p. 81–90.
    14. 14)
      • Jiang, Y., Cukic, B., Menzies, T., Bartlow, N.: `Comparing design and code metrics for software quality prediction', Proc. Fourth Int. Workshop on Predictor Models in Software Engineering. PROMISE’08, 2008, New York, USA, p. 11–18.
    15. 15)
      • Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: `The misuse of the NASA metrics data program data sets for automated software defect prediction', Evaluation and Assessment in Software Engineering (EASE), 2011, p. 96–103.
    16. 16)
      • Kutlubay, O., Turhan, B., Bener, A.B.: `A two-step model for defect density estimation', 33rdEUROMICRO Conf. Software Engineering and Advanced Applications, 2007, p. 322–332.
    17. 17)
      • Vivanco, R.A., Kamei, Y., Monden, A., Matsumoto, K.-i., Jin, D.: `Using search-based metric selection and oversampling to predict fault prone modules', IEEE CCECE, 2010, p. 1–6.
    18. 18)
      • Tao, W., Wei-hua, L.: `Naive Bayes software defect prediction model', 2010 Int. Conf. on Computational Intelligence and Software Engineering (CiSE), 2010, p. 1–4.
    19. 19)
    20. 20)
      • Mertik, M., Lenic, M., Stiglic, G., Kokol, P.: `Estimating software quality with advanced data mining techniques', Int. Conf. on Software Engineering Advances, 2006, p. 19.
    21. 21)
      • Guo, L., Ma, Y., Cukic, B., Singh, H.: `Robust prediction of fault-proneness by random forests', 15thInt. Symp. on Software Reliability Engineering. ISSRE 2004, 2004, p. 417–428.
    22. 22)
      • Nickerson, A.S., Japkowicz, N., Milios, E.: `Using unsupervised learning to guide resampling in imbalanced data sets', Proc. Eighth Int. Workshop on AI and Statistics, 2001, p. 261–265.
    23. 23)
      • Mende, T., Koschke, R.: `Effort-aware defect prediction models', European Conf. on Software Maintenance and Reengineering, 2010, p. 107–116.
    24. 24)
    25. 25)
      • Davis, J., Goadrich, M.: `The relationship between Precision-Recall and ROC curves', Proc. 23rd Int. Conf. on Machine Learning. ICML'06, 2006, New York, USA, p. 233–240.
    26. 26)
      • Cong, J., En-Mei, D., Li-Na, Q.: `Software fault prediction model based on adaptive dynamical and median particle swarm optimization', 2010 Second Int. Conf. on Multimedia and Information Technology (MMIT), 2010, 1, p. 44–47.
    27. 27)
    28. 28)
      • Khoshgoftaar, T.M., Seliya, N.: `The necessity of assuring quality in software measurement data', METRICS'04: Proc. Software Metrics, 10th Int. Symp., 2004, Washington, DC, USA, p. 119–130.
    29. 29)
      • Menzies, T., Stefano, J.S.D.: `How good is your blind spot sampling policy?', Proc. Eighth IEEE Int. Symp. on High Assurance Systems Engineering, 2004, p. 129–138.
    30. 30)
    31. 31)
      • C. Chen , A. Liaw , L. Breiman . (2004) Using random forest to learn imbalanced data.
    32. 32)
      • Challagulla, V.U.B., Bastani, F.B., Yen, I.L.: `A unified framework for defect data analysis using the mbr technique', ICTAI’06: Proc. 18th IEEE Int. Conf. on Tools with Artificial Intelligence, 2006, Washington, DC, USA, p. 39–46.
    33. 33)
      • T.J. McCabe . (1976) A complexity measure’. ICSE’76, Proc. Second Int. Conf. on Software Engineering.
    34. 34)
    35. 35)
      • Zhang, H., Nelson, A., Menzies, T.: `On the value of learning from defect dense components for software defect prediction', Proc. Sixth Int. Conf. on Predictive Models in Software Engineering. PROMISE’10, 2010, New York, USA, p. 14:1–14:9.
    36. 36)
      • Schröter, A., Zimmermann, T., Zeller, A.: `Predicting component failures at design time', Proc. Fifth Int. Symp. on Empirical Software Engineering, 2006, p. 18–27.
    37. 37)
      • Kołcz, A., Chowdhury, A., Alspector, J.: `Data duplication: an imbalance problem?', ICML 2003 Workshop on Learning from Imbalanced Datasets, 2003.
    38. 38)
      • Pelayo, L., Dick, S.: `Applying novel resampling strategies to software defect prediction', Annual Meeting of the North American Fuzzy Information Processing Society, 2007. NAFIPS'07, 2007, p. 69–72.
    39. 39)
    40. 40)
      • Jiang, Y., Cukic, B.: `Misclassification cost-sensitive fault prediction models', Proc. Fifth Int. Conf. on Predictor Models in Software Engineering. PROMISE’09, 2009, New York, USA, p. 20:1–20:10.
    41. 41)
      • Bezerra, M.E.R., Oliveira, A.L.I., Meira, S.R.L.: `A constructive RBF neural network for estimating the probability of defects in software modules', Int. Joint Conf. on Neural Networks, 2007. IJCNN 2007, 2007, p. 2869–2874.
    42. 42)
    43. 43)
      • Li, Z., Reformat, M.: `A practical method for the software fault-prediction', IEEE Int. Conf. on Information Reuse and Integration. IRI 2007, August 2007, p. 659–666.
    44. 44)
      • M.A. Hall . (1999) Correlation-based feature subset selection for machine learning.
    45. 45)
      • M.H. Halstead . (1977) Elements of software science (operating and programming systems series).
    46. 46)
      • Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: `Further thoughts on precision', Evaluation and Assessment in Software Engineering (EASE), 2011, p. 129–133.
    47. 47)
    48. 48)
      • Shivaji, S., Whitehead, E.J., Akella, R., Kim, S.: `Reducing features to improve bug prediction', 24thIEEE/ACM Int. Conf. Automated Software Engineering, 2009. ASE’09, 2009, p. 600–604.
    49. 49)
    50. 50)
      • Liebchen, G.A., Shepperd, M.: `Data sets and data quality in software engineering', PROMISE’08: Proc. Fourth Int. Workshop on Predictor Models in Software Engineering, 2008, New York, USA, p. 39–44.
    51. 51)
      • Challagulla, V.U.B., Bastani, F.B., Yen, I.L., Paul, R.A.: `Empirical assessment of machine learning based software defect prediction techniques', WORDS’05: Proc. 10th IEEE Int. Workshop on Object-Oriented Real-Time Dependable Systems, 2005, Washington, DC, USA, p. 263–270.
    52. 52)
      • I.H. Witten , E. Frank . (2005) Data mining: practical machine learning tools and techniques, Morgan Kaufmann series in data management systems.
    53. 53)
      • Oral, A.D., Bener, A.B.: `Defect prediction for embedded software', 22ndInt. Symp. on Computer and Information Sciences, 2007. ISCIS 2007, 2007, p. 1–6.
    54. 54)
    55. 55)
    56. 56)
      • Guo, L., Cukic, B., Singh, H.: `Predicting fault prone modules by the Dempster–Shafer belief networks', Proc. 18th IEEE Int. Conf. on Automated Software Engineering, 2003, p. 249–252.
    57. 57)
      • Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: `Implications of ceiling effects in defect predictors', Proc. Fourth Int. Workshop on Predictor Models in Software Engineering. PROMISE’08, 2008, New York, USA, p. 47–54.
    58. 58)
      • M.R. Segal . (2004) Machine learning benchmarks and random forest regression.
    59. 59)
      • Zhong, S., Khoshgoftaar, T.M., Seliya, N.: `Unsupervised learning for expert-based software quality estimation', Proc. Eighth IEEE Int. Symp. on High Assurance Systems Engineering, 2004, p. 149–155.
    60. 60)
    61. 61)
    62. 62)
      • Tosun, A., Bener, A.: `Reducing false alarms in software defect prediction by decision threshold optimization', Proc. 2009 Third Int. Symp. on Empirical Software Engineering and Measurement. ESEM’09, 2009, Washington, DC, USA, p. 477–480.
    63. 63)
      • Zhang, H.: `An investigation of the relationships between lines of code and defects', IEEE Int. Conf. on Software Maintenance, 2009. ICSM 2009, 2009, p. 274–283.
    64. 64)
      • Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: `SMOTEBoost: improving prediction of the minority class in boosting', Proc. Principles of Knowledge Discovery in Databases (PKDD-2003), 2003, p. 107–119.
    65. 65)
      • Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J.: `Detecting fault modules applying feature selection to classifiers', IEEE Int. Conf. on Information Reuse and Integration. IRI 2007, 2007, p. 667–672.
    66. 66)
    67. 67)
      • Kaminsky, K., Boetticher, G.: `Building a genetically engineerable evolvable program (GEEP) using breadth-based explicit knowledge for predicting software defects', IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS'04, 2004, 1, p. 10–15.
    68. 68)
      • Jiang, Y., Cukic, B., Menzies, T.: `Can data transformation help in the detection of fault-prone modules?', DEFECTS‘08: Proc. 2008 Workshop on Defects in Large Software Systems, 2008, New York, USA, p. 16–20.
    69. 69)
      • S. Dudoit , J. Fridlyand . (2003) Classification in microarray experiments, Statistical analysis of gene expression microarray data.
    70. 70)
      • Mende, T., Koschke, R.: `Revisiting the evaluation of defect prediction models', Proc. Fifth Int. Conf. on Predictor Models in Software Engineering. PROMISE’09, 2009, New York, USA, p. 7:1–7:10.
    71. 71)
      • Turhan, B., Bener, A.: `A multivariate analysis of static code attributes for defect prediction', QSIC’07: Proc. Seventh Int. Conf. on Quality Software, 2007, Washington, DC, USA, p. 231–237.
    72. 72)
    73. 73)
      • Seliya, N., Khoshgoftaar, T.M., Zhong, S.: `Analyzing software quality with limited fault-proneness defect data', Ninth IEEE Int. Symp. on High-Assurance Systems Engineering, 2005. HASE 2005, 2005, p. 89–98.
    74. 74)
      • N.V. Chawla , K.W. Bowyer , L.O. Hall , W.P. Kegelmeyer . SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. , 321 - 357
    75. 75)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2011.0132
Loading

Related content

content/journals/10.1049/iet-sen.2011.0132
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address