Volume 9, 1974

Nucleation in systems with multiple stationary states

Abstract

We consider a reaction diffusion system, far from equilibrium, which has multiple stationary states (phases) for given ranges of external constraints. If two stable phases are put in contact, then in general one phase annihilates the other and in that process there occurs a single front propagation (soliton). We investigate the macroscopic dynamics of the front structure and velocity for two model systems analytically and numerically, and for general reaction-diffusion systems by a suitable perturbation method. The vanishing of the soliton velocity establishes the analogue of the Maxwell construction used in equilibrium thermodynamics. The problem of nucleation of one phase imbedded in another is studied by a stochastic theory. We show that if the reaction dynamics is derived from a generalized potential function then the macroscopic steady states are extrema of the probability distribution. We use this result to obtain an expression for the critical radius of a nucleating phase and confirm the prediction of the stochastic theory by numerical solution of the deterministic macroscopic kinetics for a model system.

Article information

Article type
Paper

Faraday Symp. Chem. Soc., 1974,9, 241-253

Nucleation in systems with multiple stationary states

A. Nitzan, P. Ortoleva and J. Ross, Faraday Symp. Chem. Soc., 1974, 9, 241 DOI: 10.1039/FS9740900241

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements