Issue 16, 2024, Issue in Progress

Improvement of catalysis performance of pepsin and lipase enzymes by double enzyme immobilization method

Abstract

Ferrocene-coupled chitosan (CS-Fc) support polymer was synthesized for the immobilization of double enzymes and single enzymes. The immobilization study was carried out after a detailed characterization study. The binding of pepsin and lipase enzymes to the polymer was supported by the shift of peaks in the FTIR spectra of free enzymes. The particle sizes of chitosan (CS) and CS-Fc were evaluated using zeta potential measurement. The optimum conditions of the enzymes in the double enzyme system did not affect each other and each showed their activity. In the presence of double enzyme immobilization, the optimum pH remained the same with free enzyme, while the optimum temperature increased differently with an increase of 10 °C. Vmax values were 0.0020 and 0.0038 for free pepsin and lipase enzyme, respectively. However, due to double enzyme immobilization, the Vmax value increased 1.75 fold for pepsin and 3.94 fold for lipase enzyme. In the double enzyme immobilization, the substrate affinity of pepsin increased by 0.4-fold, while the substrate affinity of lipase increased by about 0.3-fold. In the 5th reuse of pepsin and lipase enzymes in the presence of double enzymes (Cs-Fc-Pep) + (Cs-Fc-Lip), it was determined as 18.21% for pepsin enzyme and 90.81% for lipase enzyme.

Graphical abstract: Improvement of catalysis performance of pepsin and lipase enzymes by double enzyme immobilization method

Article information

Article type
Paper
Submitted
01 Feb 2024
Accepted
20 Mar 2024
First published
08 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 11232-11243

Improvement of catalysis performance of pepsin and lipase enzymes by double enzyme immobilization method

F. Han and N. Sari, RSC Adv., 2024, 14, 11232 DOI: 10.1039/D4RA00842A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements