Reducing and tuning the work function of field emission nanocomposite CNT/NiO cathodes by modifying the chemical composition of the oxide

Abstract

This work presents for the first time the possibility of reducing and tuning the work function of field emission cathodes coated with metal oxides by changing the chemical composition of oxide coatings using an example of heat-treated CNT/NiO nanocomposite structures. These cathodes are formulated using carbon nanotube (CNT) arrays that are coated with ultrathin layers of nickel oxide (CNT/NiO) by atomic layer deposition (ALD). It was found that NiO at thicknesses of several nanometers grown on CNTs heat treated at a temperature of 350 °C can change its stoichiometric composition towards the formation of oxygen vacancies, since the Ni3+/Ni2+ peak area ratio increases and the position of the Ni–O peak binding energies shifts as observed using X-ray photoelectron spectroscopy (XPS). According to the secondary electron cut-off, the work function was 4.95 for pristine CNTs and it was found that the work function of deposited NiO layers on CNTs decreased after heat treatment. The decrease in work function occurs as a result of changes in the chemical composition of the oxide film. For the heat-treated CNT/NiO composites, the work function was 4.30 eV with a NiO layer thickness of 7.6 nm, which was less than that for a NiO thin film close to the stoichiometric composition, which had a work function of 4.48 eV. The field emission current–voltage characteristics showed that the fields for producing an emission current density of 10 μA cm−2 were 5.54 V μm−1 for pure nanotubes and 4.32 V μm−1 and 4.19 V μm−1 for NiO-coated CNTs (3.8 and 7.6 nm), respectively. The present study has shown that heat treatment of deposited thin NiO layers on field cathodes is a promising approach to improve the efficiency of field emission cathodes and is a new approach in vacuum nanoelectronics that allows tuning the work function of field emission cathodes.

Graphical abstract: Reducing and tuning the work function of field emission nanocomposite CNT/NiO cathodes by modifying the chemical composition of the oxide

Article information

Article type
Paper
Submitted
02 Mar 2024
Accepted
25 Apr 2024
First published
29 Apr 2024

Nanoscale, 2024, Advance Article

Reducing and tuning the work function of field emission nanocomposite CNT/NiO cathodes by modifying the chemical composition of the oxide

M. A. Chumak, E. O. Popov, S. V. Filippov, A. G. Kolosko, D. A. Kirilenko, N. A. Bert, E. V. Zhizhin, A. V. Koroleva, I. S. Yezhov and M. Yu. Maximov, Nanoscale, 2024, Advance Article , DOI: 10.1039/D4NR00908H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements