Issue 42, 2022, Issue in Progress

Titanium oxide-based optoelectronic synapses with visual memory synergistically adjusted by internal emotions and ambient illumination

Abstract

Brain-inspired neuromorphic computing has become one of the critical technologies to overcome the bottleneck of von Neumann architecture. It is a vital step to construct a brain-like neuromorphic computing system at the hardware level by utilizing artificial synaptic devices. Compared with electronic synaptic devices, optoelectronic synaptic devices have the advantages of low power consumption, low crosstalk, and high bandwidth. Artificial optoelectronic synapses, analogous to retinal structure, can directly respond to and process light signal information to mimic the neuromorphic visual system. As high-level nerve impulses, both generated and regulated, emotions affect the strength and persistence of memory. Ambient illumination can provide visual perception to distinguish the size, color, and other characteristics of objects as well as affect the nonvisual functions of individuals, such as emotional states, thereby affecting learning and memory function. Herein, an artificial optoelectronic synapse composed of ITO/TiO2−x/p-Si was proposed. A variety of biologically dependent synaptic plasticity relating to learning and memory, including short-term synaptic plasticity, long-term synaptic plasticity, and learning-forgetting-relearning multifunctional advanced synaptic activity, was successfully simulated. A 3 × 3 artificial optoelectronic synapse array based on 9 devices was constructed to mimic the functions of visual learning and memory affected by internal emotion and ambient illumination. The proposed artificial optoelectronic synapse will exhibit great potential in visual and image information perception and memory.

Graphical abstract: Titanium oxide-based optoelectronic synapses with visual memory synergistically adjusted by internal emotions and ambient illumination

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2022
Accepted
11 Sep 2022
First published
26 Sep 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 27162-27169

Titanium oxide-based optoelectronic synapses with visual memory synergistically adjusted by internal emotions and ambient illumination

Y. Guo, Y. Liu, Q. Chen and G. Liu, RSC Adv., 2022, 12, 27162 DOI: 10.1039/D2RA02749F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements