Issue 16, 2022

Ionic liquid based dopant-free band edge shift in BiVO4 particles for photocatalysis under simulated sunlight irradiation

Abstract

Foreign elemental doping is a widely utilized strategy to modify the electronic structure of semiconductors. Herein, we present a dopant-free novel synthesis approach to control the electronic structure of a semiconductor. Utilizing butyl methyl imidazolium ([BMIM]Cl) and methoxyethyl methyl imidazolium ([M(MOE)Im][Cl]) chloride ILs, we prepared four different Bi and V based ILs: 3-butyl-1-methyl-1H-imidazol-3-ium vanadate [BMIm][VO3], 3-(2-methoxyethyl)-1-methyl-1H-imidazol-3-ium vanadate [M(MOE)Im][VO3], 3-butyl-1-methyl-1H-imidazol-3-ium tetrachlorobismate [BMIm][BiCl4] and 3-(2-methoxyethyl)-1-methyl-1H-imidazol-3-ium tetrachlorobismate [M(MOE)Im][BiCl4]. Owing to the bimetallic oxide nature of BiVO4, these gels were mixed either with each other or with Bi/V commercial salts and simply heat-treated to obtain monoclinic BiVO4. Depending on the IL, the bandgap energy of pure BiVO4 will be redshifted (2.44 to 2.25 eV). The IL based synthesis induced oxygen vacancies and uplifted the BiVO4 valence band edge as observed in the X-ray photoelectron spectroscopy (XPS). These effects were profound for IL anchored Bi; however, the side effects of this synthesis were chemisorption of a higher oxygen content and low reactivity of Bi with V to form an additional V2O5 phase. ILs acted as templates to form smooth spherical particles with improved crystallinity. [M(MOE)Im] based synthesis resulted in lower-order crystallinity and a large V–O bonding length of BiVO4 compared to [BMIm] which may be ascribed to its lower-order cationic–anionic electrostatic attraction associated with the presence of oxygen in the ether-group for [M(MOE)Im]. [BMIm] cation-based synthesis suppressed photogenerated charge-recombination and resulted in a five-fold O2 evolution of ∼30 μmol for 3 h (AM 1.5G illumination) compared to pure BiVO4 which was better compared to the sample prepared by the conventional hydrothermal process. It also improved the photocurrent, and the MS plots have shown that the conduction band was not much affected; however, the defect density was larger for IL based synthesis.

Graphical abstract: Ionic liquid based dopant-free band edge shift in BiVO4 particles for photocatalysis under simulated sunlight irradiation

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2022
Accepted
29 May 2022
First published
30 May 2022
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2022,3, 6485-6495

Ionic liquid based dopant-free band edge shift in BiVO4 particles for photocatalysis under simulated sunlight irradiation

N. Khan, R. N. Wolff, H. Ullah, G. J. Chacón, W. S. Rosa, J. Dupont, R. V. Gonçalves and S. Khan, Mater. Adv., 2022, 3, 6485 DOI: 10.1039/D2MA00259K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements