Issue 33, 2020, Issue in Progress

MoS42− intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of heavy metals

Abstract

The enormous increase of heavy metal pollution has led to a rise in demand for synthesizing efficient and stable adsorbents for its treatment. Therefore, we have designed a novel adsorbent by introducing (MoS4)2− moieties within the layers of NiFeTi LDH-NO3, via an ion exchange mechanism, as a stable and efficient adsorbent to deal with the increasing water pollution due to heavy metals. Characterization techniques such as XRD, FTIR, TGA, SEM, TEM, and Raman spectroscopy were used to confirm the formation of (MoS4)2− intercalated NiFeTi LDH and structural changes after the adsorption process. The efficiency of the material was tested with six heavy metal ions, among which it was found to be effective for toxic Pb2+ and Ag+ ions. When selectivity was studied with all six of the metal ions copresent in one solution, the material showed greater selectivity for Pb2+ and Ag+ ions with the selectivity order of Ni2+ < Cu2+ < Zn2+ < Fe3+ < Pb2+ < Ag+, with great adsorption capacities of 653 mg g−1 for Pb2+ and 856 mg g−1 for Ag+ metal ions. Further, the kinetics adsorption study for both the metal ions had a great correlation with the pseudo-second-order model and supported the chemisorption process via the formation of M–S bonding. The adsorption process obeyed the Langmuir model. Therefore, the MoS4-LDH material could be a promising adsorbent for the removal of heavy metals.

Graphical abstract: MoS42− intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of heavy metals

Article information

Article type
Paper
Submitted
26 Mar 2020
Accepted
10 May 2020
First published
20 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 19371-19381

MoS42− intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of heavy metals

G. Rathee, S. Kohli, A. Awasthi, N. Singh and R. Chandra, RSC Adv., 2020, 10, 19371 DOI: 10.1039/D0RA02766A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements