Issue 7, 2019

Energetic effects of hybrid organic/inorganic interfacial architecture on nanoporous black silicon photoelectrodes

Abstract

Photoelectrochemical cells have been the subject of great interest in the research community as a route for fuel formation directly from sunlight. Interfacial layers are frequently employed on the surface of light-absorbing semiconductor photoelectrodes to enhance the activity and stability of the semiconductor. Here we consider the energetic effects of such layers on a nanoporous ‘black’ silicon photocathode. We construct hybrid organic/inorganic films by growing an oxide-nucleating molecular monolayer on the nanostructured Si surface and burying this molecular monolayer under TiO2 deposited by atomic layer deposition. We examine the energetic effects of this hybrid interfacial architecture via our recently developed intensity-modulated high-frequency resistivity (IMHFR) impedance spectroscopy technique and quantify the change in thermodynamic flatband potential as the oxide thickness is increased from 0–15 nm. By comparing the IMHFR data with traditional voltammetry, we are able to deconvolute the thermodynamic and kinetic contributions that determine the observed proton reduction onset potential. We also study these photoelectrodes with Pt nanoparticles either (i) deposited on top of the molecular/TiO2 interfacial layer or (ii) etched into the Si surface. In the first architecture, a beneficial positive shift in the thermodynamic flatband potential is achieved from the Si|molecular|TiO2 p–n junction, but the lack of a direct Si|Pt contact results in large kinetic charge transfer losses. In contrast, the second architecture allows for facile charge transfer due to the direct Si|Pt contact but negates any beneficial thermodynamic effect of the molecular/TiO2 bilayer. Despite the lack of thermodynamic effect of the hybrid molecular/TiO2 interfacial layer, we find that there is still a significant kinetic benefit from this layer. This work demonstrates the sensitive nature of the thermodynamics and kinetics on the interfacial architecture and yields critical insights into the design of photoelectrochemical interfaces.

Graphical abstract: Energetic effects of hybrid organic/inorganic interfacial architecture on nanoporous black silicon photoelectrodes

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2019
Accepted
01 Mar 2019
First published
01 Mar 2019

Sustainable Energy Fuels, 2019,3, 1660-1667

Author version available

Energetic effects of hybrid organic/inorganic interfacial architecture on nanoporous black silicon photoelectrodes

R. T. Pekarek, S. T. Christensen, J. Liu and N. R. Neale, Sustainable Energy Fuels, 2019, 3, 1660 DOI: 10.1039/C9SE00032A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements