Skip to main content
Log in

Co-sensitization of the HD-2 complex with low-cost cyanoacetanilides for highly efficient DSSCs

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical and electrochemical properties of new targeted 2-cyanoacetanilide-based dyes are illustrated. New cyanoacetanilides SA7–10 were synthesized and employed as co-sensitizers in DSSCs. The chemical structures of these 2-cyanoacetanilides differ according to the substituent at the benzene ring (–H, –Me, –OMe and –NEt2), with the anchoring moiety being the same, a –COOH group. Furthermore, a density functional theory (DFT) calculation has shown an effective intermolecular charge transfer character, the HOMOs of SA7–10 are mainly located on the corresponding donor part, and their LUMOs are located on carboxylic acid moieties as the acceptor. Interestingly, using photosensitizers SA7–10 as co-sensitizers with HD-2 dye causes an improvement in their photovoltaic performances. Among the dyes, SA10 co-sensitized with HD-2 displayed an overall efficiency of 8.25%, a JSC of 19.5 mA cm−2, a VOC of 0.65 V and an FF of 64.35 compared to 7.46%, 19 mA cm−2, 0.64 V and 60.54, respectively, of HD-2 only. Moreover, the electrochemical impedance spectroscopy (EIS) data of SA7–10 and HD-2 were found to be in accordance with the obtained photovoltaic parameters. Finally, the results indicated that 2-cyanoacetanilide-based dyes were utilized as promising co-sensitizers due to their easy preparation methods and their relatively small size

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353 ,737–740.

    Google Scholar 

  2. M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem., 2005, 44 ,6841–6851.

    Google Scholar 

  3. J. Luo, Z. Wan, C. Jia, Y. Wang and X. Wu, A co-sensitized approach to efficiently fill the absorption valley, avoid dye aggregation and reduce the charge recombination, Electrochim. Acta, 2016, 215 ,506–514.

    Google Scholar 

  4. L. Lyu, R. Su, S. Al-Qaradawic, K. Al-Saad and A. El-Shafei, Three-component one-pot reaction for molecular engineering of novel cost-effective highly rigid quinoxaline-based photosensitizers for highly efficient DSSCs application: Remarkable photovoltage, Dyes Pigm., 2019, 171 ,107683.

    CAS  Google Scholar 

  5. S. Mathew, A. Yella, P. Gao, R. Humphry, F. E. Curchod, N. Astani, I. Tavernelli, U. Rothlisberger, Md. Khaja Nazeeruddin and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem., 2014, 6(3), 242–247.

    CAS  PubMed  Google Scholar 

  6. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab and M. Hanaya, Chem. Commun., 2015, 51 ,15894–15897.

    Google Scholar 

  7. M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu and C. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Mater. Today, 2015, 18 ,155–162, DOI: 10.1016/j.mattod.2014.09.001.

    CAS  Google Scholar 

  8. D. Moia, U. B. Cappel, T. Leijtens, X. Li, A. M. Telford, H. J. Snaith, B. C. O’Regan, J. Nelson and P. R. F. Barnes, The Role of Hole Transport between Dyes in Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2015, 119 ,18975–18985.

    Google Scholar 

  9. C. Chen, M. Cheng, X. Ding, H. Li, F. Qiao, L. Xu and H. Li, Molecular engineering of triphenylamine functionalized phenoxazine sensitizers for highly efficient solid-State dye sensitized solar cells, Dyes Pigm., 2019, 162 ,606–610.

    Google Scholar 

  10. F. Bella, A. Sacco, G. P. Salvador, S. Bianco, E. Tresso, C. F. Pirri and R. Bongiovanni, First pseudohalogen polymer electrolyte for dye-sensitized solar cells promising for in situ photopolymerization, J. Phys. Chem. C, 2013, 117 ,20421–20430.

    Google Scholar 

  11. F. Bella and R. Bongiovanni, Photoinduced polymerization: an innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dyesensitized solar cells, J. Photochem. Photobiol., C, 2013, 16 ,1–21.

    Google Scholar 

  12. F. Bella, M. Imperiyka and A. Ahmad, Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells, J. Photochem. Photobiol., A, 2014, 289 ,73.

    CAS  Google Scholar 

  13. F. Bella, S. Galliano, C. Gerbaldi and G. Viscardi, Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices, Energies, 2016, 9 ,384.

    Google Scholar 

  14. D. Lee, K. Ahn, S. Thogiti and J. Kim, Mass transport effect on the photovoltaic performance of ruthenium-based quasi-Solid dye sensitized solar cells using cobalt based redox couples, Dyes Pigm., 2015, 117 ,83–91.

    Google Scholar 

  15. S. Zhang, J. Jin, D. Li, Z. Fu, S. Gao, S. Cheng, X. Yu and Y. Xiong, Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials, RSCAdv., 2019, 9 ,22092–22100.

    Google Scholar 

  16. E. Meyer, A. Bede, N. Zingwe and R. Taziwa, Metal Sulphides and Their Carbon Supported Composites as Platinum-Free Counter Electrodes in Dye-Sensitized Solar Cells: A Review, Materials, 2019, 12(12), 1980.

    CAS  PubMed Central  Google Scholar 

  17. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Petterson, Dye-sensitized solar cells, Chem. Rev., 2010, 110 ,6595–6663.

    Google Scholar 

  18. M. Nazeeruddin, F. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J. Am. Chem. Soc., 2005, 127(48), 16835–16847.

    CAS  PubMed  Google Scholar 

  19. M. R. Elmorsy, R. Su, A. A. Fadda, H. A. Etman, E. H. Tawfik and A. El-Shafei, Dyes Pigm., 2018, 158 ,121–130.

    Google Scholar 

  20. N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angew. Chem., Int. Ed., 2006, 45 ,2338–2345.

    Google Scholar 

  21. M. R. Elmorsy, R. Su, A. A. Fadda, H. A. Etman, E. H. Tawfik and A. El-Shafei, Dyes Pigm., 2018, 156 ,348–356.

    Google Scholar 

  22. S. Aghazad and M. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells, Inorganics, 2018, 6 ,52.

    Google Scholar 

  23. M. Liang and J. Chen, Arylamine organic dyes for dye-sensitized solar cells, Chem. Soc. Rev., 2013, 42 ,3453–3488.

    Google Scholar 

  24. K. Kanaparthi, J. Kandhadi and L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: Recent advances, Tetrahedron, 2012, 68 ,8383–8393.

    Google Scholar 

  25. J. Yum, E. Baranoff, S. Wenger, M. Nazeeruddin and M. Gratzel, Panchromatic engineering for dye-sensitized solar cells, Energy Environ. Sci., 2011, 4 ,842–857.

    Google Scholar 

  26. K. Ganesh, K. Pavan, S. Paolo, M. Gabriele, L. Maria, B. Olivia and D. Filippo, New terpyridine-based ruthenium complexes for dye sensitized solar cells applications, Inorg. Chim. Acta, 2016, 442 ,158–166.

    Google Scholar 

  27. P. Naik, R. Su, M. R. Elmorsy, A. El-Shafei and A. V. Adhikari, Enhancing photovoltaic performance of DSSCs sensitized with Ru-II complexes by D–π–A configured carbazole based co-sensitizers, New J. Chem., 2018, 42 ,9443–9448.

    Google Scholar 

  28. P. Naik, R. Su, M. R. Elmorsy, A. El-Shafei and A. V. Adhikari, New di-anchoring A–π-D–π-A configured organic chromophores for DSSC application: sensitization and co-sensitization studies, Photochem. Photobiol. Sci., 2018, 17 ,302–314.

    Google Scholar 

  29. P. Naik, R. Su, M. R. Elmorsy, A. El-Shafei and A. V. Adhikari, New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium(II) complex (NCSU-10), J. Energy Chem., 2018, 27 ,351–360.

    Google Scholar 

  30. P. Naik, R. Su, M. R. Elmorsy, A. El-Shafei and A. V. Adhikari, Investigation of new carbazole based metal-free dyes as active photosensitizers/co-sensitizers for DSSCs, Dyes Pigm., 2018, 149 ,177–187.

    Google Scholar 

  31. M. R. Elmorsy, R. Su, A. A. Fadda, H. A. Etman, E. H. Tawfik and A. El-Shafei, Co-sensitization of Ru(II) complex with terthiophene-based D–π–π–A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance, New J. Chem., 2018, 42 ,11430–11437.

    Google Scholar 

  32. P. Naik, M. R. Elmorsy, R. Su, D. D. Babu, A. El-Shafei and A. V. Adhikari, New carbazole based metal-free organic dyes with D-π-A-π-A architecture for DSSCs: Synthesis, theoretical and cell performance studies, Solar Energy, 2017, 153 ,600–610.

    Google Scholar 

  33. M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. Moser, M. Grätzel and A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting, Nat. Photonics, 2017, 11 ,372–378.

    Google Scholar 

  34. W. Ried and B. Schleimer, Cyan-acethydrazid zur Darstellung von Stickstoff-Heterocyclen, II. 1-Acyl-3.5-dimethyl-pyrazole als Acylierungsmittel, Angew. Chem., 1958, 70 ,164.

    Google Scholar 

  35. A. V. Eremeev, I. P. Piskunova and R. S. El’kinson, Synthesis of 2-amino-1-azirines and their reactions with carboxylic acids, Khim. Geterotsikl. Soedin., 1985, 9 ,1202–1206.

    Google Scholar 

  36. H. Cheema, A. Islam, L. Han and A. El-Shafei, Influence of Number of Benzodioxan-Stilbazole-based Ancillary Ligands on Dye Packing, Photovoltage and Photocurrent in Dye Sensitized Solar Cells, ACS Appl. Mater. Interfaces, 2014, 6 ,11617–11624.

    Google Scholar 

  37. L. Karapetyan, Synthesis of novel N-aryl-2,5-dihydro-2-iminofuran-3-carboxamides and their chemical transformations, Monatsh. Chem., 2012, 143 ,687–694.

    Google Scholar 

  38. M. Al-Eid, S. Lim, K. Park, B. Fitzpatrick, C. Han, K. Kwak, J. Hong and G. Cooke, Facile synthesis of metal-free organic dyes featuring a thienylethynyl spacer for dye sensitized solar cells, Dyes Pigm., 2014, 104 ,197–203.

    Google Scholar 

  39. O. Gerko, V. Bryan Bergeron, J. Gerald Meyer and C. Peter Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells, J. Phys. Chem. B, 2001, 105 ,6867–6873.

    Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin and R. Cammi, Eur. J. Inorg. Chem., 2017, 3690–3697; C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  41. R. Y.-Y. Lin, F.-L. Wu, C.-H. Chang, H.-H. Chou, T.-M. Chuang, T.-C. Chu, et al., Y-shaped metal-free D–π–(A)2 sensitizers for high-performance dye-sensitized solar cells, J. Mater. Chem. A, 2014, 2 ,3092–3101.

    Google Scholar 

  42. D. D. Babu, R. Su, P. Naik, A. El-Shafei and A. V. Adhikari, Synthesis and photovoltaic performance of a novel asymmetric dual-channel co-sensitizer for dye-sensitized solar cell beyond 10% efficiency, Dyes Pigm., 2017, 141 ,112–120.

    Google Scholar 

  43. K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian and W. Zhu, Constructing High-Efficiency D-A-π-A-Featured Solar Cell Sensitizers: A Promising Building Block of 2,3-Diphenylquinoxaline for Anti-aggregation and Photostability, ACS Appl. Mater. Interfaces, 2013, 5 ,4986–4995.

    Google Scholar 

  44. H. Cheema, R. Younts, L. Ogbose, B. Gautam, K. Gundogdu and A. El-Shafei, Structure-property relationships: Steric effect in ancillary ligand and how it influences photocurrent and photovoltage in dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2015, 17 ,2750–2756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Elmorsy.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00381a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmorsy, M.R., Lyu, L., Su, R. et al. Co-sensitization of the HD-2 complex with low-cost cyanoacetanilides for highly efficient DSSCs. Photochem Photobiol Sci 19, 281–288 (2020). https://doi.org/10.1039/c9pp00381a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00381a

Navigation