Skip to main content
Log in

Theoretical insights into the effect of ligands on platinum(II) complexes with a bidentate bis(o-carborane) ligand structure†

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Carboranes feature a wealth of unique structures and properties in phosphorescent transition-metal complexes (PTMCs). Herein, we identify the influence between the electronic structure in carboranes and the main ligand based on the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), which affects the phosphorescence properties of carborane-containing Pt compounds. Furthermore, the mechanism, including singlet–triplet splitting energies ΔE(Sn – T1), transition dipole moment for S0 – Sn transitions, the zero-field splitting (ZFS), the radiative decay rate constant (kr), the Huang–Rhys factor (S), and the spin–orbit coupling (SOC) matrix elements <T1|H SOC|Sn> have been carefully investigated. The results presented here reveal the functional action 1,1’-bis(o-carborane) contributes to the emission process owing to the manipulation of main ligand dtb-bpy and complex 1a shows promising prospects for achieving highly efficient phosphorescence via engineering the conjugation of the main ligand dtb-bpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Heying, J. W. Ager Jr., S. L. Clark, D. J. Mangold, H. L. Goldstein, M. Hillman, R. J. Polak and J. W. Szymanski, Inorg. Chem., 1963, 2, 1089–1092.

    Article  CAS  Google Scholar 

  2. M. M. Fein, J. Bobinski, N. Mayes, N. Schwartz and M. S. Cohen, Inorg. Chem., 1963, 2, 1111–1115.

    Article  CAS  Google Scholar 

  3. M. M. Fein, D. Grafsteinn, J. E. Paustian, J. Bobinski, B. M. Lichstein, N. Mayes and M. S. Cohen, Inorg. Chem., 1963, 2, 1115–1119.

    Article  CAS  Google Scholar 

  4. X. Li, H. Yan and Q. Zhao, Chem.Eur. J., 2016, 22, 1888–1898.

    Article  CAS  PubMed  Google Scholar 

  5. H. Zhang, W. Li, X. Yan, W. Cai, M. Li, R. He and W. Shen, New J. Chem., 2018, 42, 5955–5966.

    Article  CAS  Google Scholar 

  6. H. Naito, Y. Morisaki and Y. Chujo, Angew. Chem., Int. Ed., 2015, 54, 5084–5087.

    Article  CAS  Google Scholar 

  7. W. Li, X. Yan, H. Zhang, R. He, M. Li and W. Shen, Eur. J. Inorg. Chem., 2018, 2018, 99–108.

    Article  CAS  Google Scholar 

  8. A. M. Prokhorov, T. Hofbeck, R. Czerwieniec, A. F. Suleymanova, D. N. Kozhevnikov and H. Yersin, J. Am. Chem. Soc., 2014, 136, 9637–9642.

    Article  CAS  PubMed  Google Scholar 

  9. A. Ferrer-Ugalde, J. Cabrera-Gonzalez, E. J. Juarez-Perez, F. Teixidor, E. Perez-Inestrosa, J. M. Montenegro, R. Sillanpaa, M. Haukka and R. Nunez, Dalton Trans., 2017, 46, 2091–2104.

    Article  CAS  PubMed  Google Scholar 

  10. K. Nishino, K. Uemura, K. Tanaka and Y. Chujo, New J. Chem., 2018, 42, 4210–4214.

    Article  CAS  Google Scholar 

  11. H. Naito, K. Uemura, Y. Morisaki, K. Tanaka and Y. Chujo, Eur. J. Inorg. Chem., 2018, 2018, 1885–1890.

    Article  CAS  Google Scholar 

  12. C. Shi, H. Sun, X. Tang, W. Lv, H. Yan, Q. Zhao, J. Wang and W. Huang, Angew. Chem., Int. Ed., 2013, 52, 13434–13438.

    Article  CAS  Google Scholar 

  13. H. J. Bae, J. Chung, H. Kim, J. Park, K. M. Lee, T. W. Koh, Y. S. Lee, S. Yoo, Y. Do and M. H. Lee, Inorg. Chem., 2014, 53, 128–138.

    Article  CAS  PubMed  Google Scholar 

  14. M. Tominaga, H. Naito, Y. Morisaki and Y. Chujo, New J. Chem., 2014, 38, 5686–5690.

    Article  CAS  Google Scholar 

  15. Y. Kim, S. Park, Y. H. Lee, J. Jung, S. Yoo and M. H. Lee, Inorg. Chem., 2016, 55, 909–917.

    Article  CAS  PubMed  Google Scholar 

  16. K. O. Kirlikovali, J. C. Axtell, A. Gonzalez, A. C. Phung, S. I. Khan and A. M. Spokoyny, Chem. Sci., 2016, 7, 5132–5138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. C. Axtell, K. O. Kirlikovali, P. I. Djurovich, D. Jung, V. T. Nguyen, B. Munekiyo, A. T. Royappa, A. L. Rheingold and A. M. Spokoyny, J. Am. Chem. Soc., 2016, 138, 15758–15765.

    Article  CAS  PubMed  Google Scholar 

  18. L. Boehling, A. Brockhinke, J. Kahlert, L. Weber, R. A. Harder, D. S. Yufit, J. A. K. Howard, J. A. H. MacBride and M. A. Fox, Eur. J. Inorg. Chem., 2016, 2016, 403–412.

    Article  CAS  Google Scholar 

  19. X. Li, H. Yan and Q. Zhao, Chem.Eur. J., 2016, 22, 1888–1898.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Luo, Y. Xu, W. Zhang, W. Li, M. Li, R. He and W. Shen, J. Phys. Chem. C, 2016, 120, 3462–3471.

    Article  CAS  Google Scholar 

  21. G. Z. Lu, Z. L. Tu, L. Liu, Y. X. Zheng and Y. Zhao, Dalton Trans., 2019, 48, 1892–1899.

    Article  CAS  PubMed  Google Scholar 

  22. X. Wang, J. Zhang, X. Zhu, T. Ren and L. Wang, Spectrochim. Acta, Part A, 2018, 204, 340–347.

    Article  CAS  Google Scholar 

  23. A. D. Becke, J. Chem. Phys., 2014, 140, 18A301–18A501.

    Article  PubMed  CAS  Google Scholar 

  24. J. G. Snijders, E. J. Baerends and P. Ros, Mol. Phys., 1979, 38, 1909–1929.

    Article  CAS  Google Scholar 

  25. J. Autschbach, T. Ziegler, S. J. A. van Gisbergen and E. J. Baerends, J. Chem. Phys., 2002, 116, 6930–6940.

    Article  CAS  Google Scholar 

  26. Y. L. Li, L. Han, Y. Mei and J. Z. H. Zhang, Chem. Phys. Lett., 2009, 482, 217–222.

    Article  CAS  Google Scholar 

  27. S. W. Lai and C. M. Che, Top. Curr. Chem., 2004, 241, 27–63.

    Article  CAS  Google Scholar 

  28. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer, Coord. Chem. Rev., 2011, 255, 2622–2652.

    Article  CAS  Google Scholar 

  29. N. C. Joanne, S. Wilson, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby and R. H. Friend, J. Am. Chem. Soc., 2001, 123, 9412–9417.

    Article  CAS  Google Scholar 

  30. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101–194103.

    Article  PubMed  CAS  Google Scholar 

  31. S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 1990, 94, 8897–8909.

    Article  CAS  Google Scholar 

  32. A. D. Boese and J. M. Martin, J. Chem. Phys., 2004, 121, 3405–3416.

    Article  CAS  PubMed  Google Scholar 

  33. E. G. Hohenstein, S. T. Chill and C. D. Sherrill, J. Chem. Theory Comput., 2008, 4, 1996–2000.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2007, 120, 215–241.

    Article  CAS  Google Scholar 

  35. T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  36. A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  37. J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, 33, 8822–8824.

    Article  CAS  Google Scholar 

  38. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  39. M. Abrahamsson, M. J. Lundqvist, H. Wolpher, O. Johansson, L. Eriksson, J. Bergquist, T. Rasmussen, H. C. Becker, L. Hammarstrom, P. O. Norrby, B. Akermark and P. Persson, Inorg. Chem., 2008, 47, 3540–3548.

    Article  CAS  PubMed  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

  41. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.

    Article  CAS  Google Scholar 

  42. P. C. Hariharan and J. A. Pople, Mol. Phys., 2006, 27, 209–214.

    Article  Google Scholar 

  43. C. F. Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391–403.

    CAS  Google Scholar 

  44. Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang and Z. Shuai, Mol. Phys., 2018, 116, 1078–1090.

    Article  CAS  Google Scholar 

  45. K. L. Bak and P. Jorgensen, J. Chem. Phys., 1993, 98, 8873–8887.

    Article  CAS  Google Scholar 

  46. S. Y. Chang, J. Kavitha, S. W. Li, C. S. Hsu, Y. Chi, Y. S. Yeh, P. T. Chou, G. H. Lee, A. J. Carty, Y. T. Tao and C. H. Chien, Inorg. Chem., 2006, 45, 137–146.

    Article  CAS  PubMed  Google Scholar 

  47. W. Cai, H. Zhang, X. Yan, A. Zhao, R. He, M. Li, Q. Meng and W. Shen, Phys. Chem. Chem. Phys., 2019, 21, 8073–8080.

    Article  CAS  PubMed  Google Scholar 

  48. G. S. Ming Tong, K. T. Chan, X. Chang and C. M. Che, Chem. Sci., 2015, 6, 3026–3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. G. S. Tong, P. K. Chow, W. P. To, W. M. Kwok and C. M. Che, Chem., 2014, 20, 6433–6443.

    Article  CAS  Google Scholar 

  50. W. H. Lam, E. S. H. Lam and V. W. W. Yam, J. Am. Chem. Soc., 2013, 135, 15135–15143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ancong Zhao.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ c9pp00251k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Cai, W., Yan, X. et al. Theoretical insights into the effect of ligands on platinum(II) complexes with a bidentate bis(o-carborane) ligand structure†. Photochem Photobiol Sci 18, 2421–2429 (2019). https://doi.org/10.1039/c9pp00251k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00251k

Navigation