Skip to main content

Advertisement

Log in

Influence of the auxiliary acceptor and π-bridge in triarylamine dyes on dye-sensitized solar cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Four metal-free organic dyes (AFL7AFL10) based on triarylamine donors and different π-bridges with or without a benzothiadiazole auxiliary acceptor have been synthesized. The dyes’ photophysical and electrochemical properties, theoretical calculations, and dye-sensitized solar cell (DSSC) performances have been investigated. Electrochemical measurement data indicate that varying the π-conjugacy system can tune the HOMO and LUMO energy levels. A high molar extinction coefficient combined with a broad absorption spectrum helps to reinforce the dyes’ light harvesting ability; therefore, it could help to increase the JSC of the DSSCs. Among the four dyes, AFL7 bearing the bithiophene bridge achieves the best photocurrent performance with a JSC value of 16.94 mA cm−2, corresponding to an overall conversion efficiency η of 7.92% under standard AM 1.5 G conditions (that of N719 dye was 8.53% under the same conditions). The results show that the dyes based on the triarylamine donor containing fluorenyl and biphenyl moieties are promising candidates for improving the performance of DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mishra, M. K. R. Fischer and P. Bäuerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure–Property Relationships to Design Rules, Angew. Chem., Int. Ed., 2009, 48, 2474–2499.

    Article  CAS  Google Scholar 

  2. F. Bella, C. Gerbaldi, C. Barolo and M. L. Gratze, Aqueous dye sensitized solar cells, Chem. Soc. Rev., 2015, 44, 3431–3473.

    Article  CAS  Google Scholar 

  3. M. R. Elmorsy, R. Su, A. A. Fadda, H. A. Etmanb, E. H. Tawfik and A. El-Shafei, Dyes Pigm., 2018, 158, 121.

    Article  CAS  Google Scholar 

  4. S. Cai, X. Hu, Z. Zhang, J. Su, X. Li, A. Islam, L. Han and H. Tian, Rigid triarylamine-based efficient DSSC sensitizers with high molar extinction coefficients, J. Mater. Chem. A, 2013, 1, 4763–4772.

    Article  CAS  Google Scholar 

  5. S. Ko, H. Choi, M. S. Kang, H. Hwang, H. Ji, J. Kim, J. Ko and Y. Kang, Silole-spaced triarylamine derivatives as highly efficient organic sensitizers indye-sensitized solar cells (DSSCs), J. Mater. Chem., 2010, 20, 2391–2399.

    Article  CAS  Google Scholar 

  6. Y. Xie, J. Gao, S. Zhang and L. Wu, Novel indeno[2,1-b]carbazole donor-based organic dyes for dye-sensitized solar cells, Photochem. Photobiol. Sci., 2018, 17, 423–431.

    Article  CAS  Google Scholar 

  7. S. H. Kang, M. J. Jeong, Y. K. Eom, I. T. Choi, S. M. Kwon, Y. Yoo, J. Kim, J. Kwon, J. H. Park and H. K. Kim, Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications, Adv. Energy Mater., 2017, 7, 1602117.

    Article  Google Scholar 

  8. Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim and H. K. Kim, Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dyesensitized and tandem solar cells, J. Mater. Chem. A, 2017, 5, 2297–2308.

    Article  CAS  Google Scholar 

  9. H. Jiang, Y. Wu, A. Islam, M. Wu, W. Zhang, C. Shen, H. Zhang, E. Li, H. Tian and W. Zhu, Molecular Engineering of Quinoxaline Based D-A-π-A Organic Sensitizers: Taking the Merits of a Large and Rigid Auxiliary Acceptor, J. Mater. Chem. A, 2018, 6, 14518–14545.

    Article  Google Scholar 

  10. S. Y. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian and L. Y. Han, A novel D–A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells, Chem. Commun., 2012, 48, 6972–6974.

    Article  CAS  Google Scholar 

  11. B. S. Chen, D. Y. Chen, C. L. Chen, C. W. Hsu, H. C. Hsu, K. L. Wu, S. H. Liu, P. T. Chou and Y. Chi, Donor–acceptor dyes with fluorine substituted phenylene spacer for dyesensitized solar cells, J. Mater. Chem., 2011, 21, 1937–1945.

    Article  CAS  Google Scholar 

  12. K. S. V. Gupta, S. Singh, A. Islam, L. Han and M. Chandrasekharam, Simple Fluorene Based Triarylamine Metal-Free Organic Sensitizers, Electrochim. Acta, 2015, 174, 581–587.

    Article  CAS  Google Scholar 

  13. Y. D. Lin and T. J. Chow, Geometrical effect of stilbene on the performance of organic dye-sensitized solar cells, J. Mater. Chem., 2011, 21, 14907–14916.

    Article  CAS  Google Scholar 

  14. T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes, J. Am. Chem. Soc., 2004, 126, 12218–12219.

    Article  CAS  Google Scholar 

  15. L. Wang, M. Liang, Y. Zhang, F. Cheng, X. Wang, Z. Sun and S. Xue, Influence of donor and bridge structure in D–A–π–A indoline dyes on the photovoltaic properties of dye-sensitized solar cells employing iodine/cobalt electrolyte, Dyes Pigm., 2014, 101, 270–279.

    Article  CAS  Google Scholar 

  16. Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo and K. Hara, Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid, J. Phys. Chem. C, 2007, 111, 7224–7230.

    Article  CAS  Google Scholar 

  17. K. S. V. Gupta, T. Suresh, S. P. Singh, A. Islam, L. Y. Han and M. Chandrasekharam, Carbazole based A-π-D-π-A dyes with a double electron acceptor for dye-sensitized solar cells, Org. Electron., 2014, 15, 266–275.

    Article  CAS  Google Scholar 

  18. S. Agrawal, P. Dev, N. J. English, K. R. Thampi and J. M. D. MacElroy, First-principles study of the excited-state properties of coumarin-derived dyes in dye-sensitized solar cells, J. Mater. Chem., 2011, 21, 11101–11108.

    Article  CAS  Google Scholar 

  19. N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics, J. Am. Chem. Soc., 2006, 128, 14256–14257.

    Article  CAS  Google Scholar 

  20. Y. Liu, J. He, L. Han and J. Gao, Influence of the auxiliary acceptor and p-bridge in carbazole dyes on photovoltaic properties, J. Photochem. Photobiol., A, 2017, 332, 283–292.

    Article  CAS  Google Scholar 

  21. P. Naik, R. Su, M. R. Elmorsy, A. El-Shafei and A. V. Adhikari, Investigation of new carbazole based metal free dyes as active photo-sensitizers/cosensitizers for dye sensitized solar cells, Dyes Pigm., 2018, 149, 177–187.

    Article  CAS  Google Scholar 

  22. H. Zu-Sheng, H. Meier and D. Cao, Phenothiazine-based dyes for efficient dye-sensitized solar cells, J. Mater. Chem. C, 2016, 4, 2404–2426.

    Article  Google Scholar 

  23. H. Meier, Z.-S. Huang and D. Cao, Double D-π-A Branched Dyes—A New Class of Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells, J. Mater. Chem. C, 2017, 5, 9828–9837.

    Article  CAS  Google Scholar 

  24. C. J. Yang, Y. J. Chang, M. Watanabe, Y. S. Hon and T. J. Chow, Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells, J. Mater. Chem., 2012, 22, 4040–4049.

    Article  CAS  Google Scholar 

  25. Y. Xie, L. Han, C. Ge, Y. Cui and J. Gao, Novel organic dye sensitizers containing fluorenyl and biphenyl moieties for solar cells, Chin. Chem. Lett., 2017, 28, 285–292.

    Article  CAS  Google Scholar 

  26. S. Kim, D. Kim, H. Choi, M. S. Kang, K. Song, S. O. Kang and J. Ko, Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering, Chem. Commun., 2008, 40, 4951–4953.

    Article  Google Scholar 

  27. J. Zhang, H. B. Li, S. L. Sun, Y. Geng, Y. Wu and Z. M. Su, Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells, J. Mater. Chem., 2012, 22, 568–576.

    Article  CAS  Google Scholar 

  28. K. Funabiki, H. Mase, Y. Saito, A. Otsuka, A. Hibino, N. Tanaka, H. Miura, Y. Himori, T. Yoshida, Y. Kubota and M. Matsu, Design of NIR-Absorbing Simple Asymmetric Squaraine Dyes Carrying Indoline Moieties for Use in Dye-Sensitized Solar Cells with Pt-Free Electrodes, Org. Lett., 2012, 14, 1246–1249.

    Article  CAS  Google Scholar 

  29. Y. Wu, W. Zhu, S. M. Zakeeruddin and M. Grätzel, Insight into D-A-π-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2015, 7, 9307–9318.

    Article  CAS  Google Scholar 

  30. Y. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Grätzel and W. Zhu, High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-p-A featured organic indoline dyes, Energy Environ. Sci., 2012, 5, 8261–8272.

    Article  CAS  Google Scholar 

  31. Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo and P. Wang, Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity, Energy Environ. Sci., 2015, 8, 3192–3197.

    Article  CAS  Google Scholar 

  32. S. B. Wang, J. C. Guo, L. He, H. R. Wang, J. Z. Zhao and C. Lu, Influence of thiophene and benzene unit in triphenylamine dyes on the performance of dye-sensitized solar cells, Synth. Met., 2013, 168, 1–8.

    Article  Google Scholar 

  33. S. Y. Qu, B. Wang, F. L. Guo, J. Li, W. J. Wu, C. Kong, et al. New diketo-pyrrolo- pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye- sensitized solar cells, Dyes Pigm., 2012, 92, 1384–1393.

    Article  CAS  Google Scholar 

  34. C. Wang, J. Li, S. Cai, Z. Ning, D. Zhao, Q. Zhang and J. H. Su, Performance improvement of dye-sensitizing solar cell by semi-rigid triarylamine-based donors, Dyes Pigm., 2012, 94, 40–48.

    Article  CAS  Google Scholar 

  35. Y. Z. Wu, M. Marszalek, S. M. Zakeeruddin, Q. Zhang, H. Tian, M. Gratzel and W. H. Zhu, High-conversionefficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes, Energy Environ. Sci., 2012, 5, 8261–8272.

    Article  CAS  Google Scholar 

  36. S. Cai, X. Hu, G. Tian, H. Zhou, W. Chen, J. Huang, X. Li and J. Su, Photo-stable substituted dihydroindolo[2,3-b]carbazole-based organic dyes: tuning the photovoltaic properties by optimizing the p structure for panchromatic DSSCs, Tetrahedron, 2014, 70, 8122–8128.

    Article  CAS  Google Scholar 

  37. H. Jiang, Y. Wu, A. Islam, M. Wu, W. Zhang and C. Shen, Molecular Engineering of Quinoxaline-Based D-A-π-A Organic Sensitizers: Taking the Merits of a Large and Rigid Auxiliary Acceptor, ACS Appl. Mater. Interfaces, 2018, 10, 13635–13644.

    Article  CAS  Google Scholar 

  38. Y. Wu and W. Zhu, Organic sensitizers from D–π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances, Chem. Soc. Rev., 2013, 42, 2039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhou, H., Zhang, S. et al. Influence of the auxiliary acceptor and π-bridge in triarylamine dyes on dye-sensitized solar cells. Photochem Photobiol Sci 18, 2042–2051 (2019). https://doi.org/10.1039/c9pp00188c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00188c

Navigation