Skip to main content
Log in

Disinfection performance using a UV/persulfate system: effects derived from different aqueous matrices

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The development of advanced photochemical processes has experienced the emergence of a promising alternative for water disinfection, different from traditional methods. The applicability has primarily been investigated in drinking and wastewater; however, new challenges related to microbiological control in marine waters necessitate evaluating the applicability of this process in such water matrices. In this study, the efficacy of persulfate (PDS) activated with UV-light against E. faecalis has been tested on the bench scale. Firstly, optimization of the different PDS concentrations (1–10 mM) and exposure times (0–5 min) was performed in distilled water. 1 mM of PDS was selected as the best dosage within the range tested. Secondly, in order to evaluate the effects of different inorganic compounds usually found in natural waters, the efficiency of the UV/PDS system was tested in three different matrices: mineral water, saltwater, and marine saltwater. Finally, different bacteria were evaluated in consortium (E. coli + E. faecalis), suggesting the same inactivation level independently on the bacterial groups and structures. The results suggest that PDS is an attractive alternative to other photochemical processes currently in use for seawater treatment and this application deserved further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ghanbari and M. Moradi, Chem. Eng. J., 2017, 310, 41–62.

    Article  CAS  Google Scholar 

  2. S. Wacławek, H. V. Lutze, K. Grübel, V. V. T. Padil, M. Černík and D. D. Dionysiou, Chem. Eng. J., 2017, 330, 44–62.

    Article  Google Scholar 

  3. Y. Penru, A. R. Guastalli, S. Esplugas and S. Baig, J. Photochem. Photobiol., A, 2012, 233, 40–45.

    Article  CAS  Google Scholar 

  4. E. Tsolaki and E. Diamadopoulos, J. Chem. Technol. Biotechnol., 2010, 85, 19–32.

    Article  CAS  Google Scholar 

  5. D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes and U. Hübner, Water Res., 2018, 139, 118–131.

    Article  CAS  Google Scholar 

  6. H. V. Lutze, N. Kerlin and T. C. Schmidt, Water Res., 2015, 72, 349–360.

    Article  CAS  Google Scholar 

  7. J. Wang and S. Wang, Chem. Eng. J., 2018, 334, 1502–1517.

    Article  CAS  Google Scholar 

  8. Z. Wang, Y. Chen, P. Xie, R. Shang and J. Ma, Chem. Eng. J., 2016, 300, 245–253.

    Article  CAS  Google Scholar 

  9. Z. Sabeti, M. Alimohammadi, S. Yousefzadeh, H. Aslani, M. Ghani and R. Nabizadeh, Water Sci. Technol.: Water Supply, 2017, 17, 1–10.

    Google Scholar 

  10. E. A. Serna-Galvis, L. Salazar-Ospina, J. N. Jiménez, N. J. Pino and R. A. Torres-Palma, J. Environ. Chem. Eng., 2018, DOI: 10.1016/j.jece.2018.02.004, in press.

  11. I. Michael-Kordatou, M. Iacovou, Z. Frontistis, E. Hapeshi, D. D. Dionysiou and D. Fatta-Kassinos, Water Res., 2015, 85, 346–358.

    Article  CAS  Google Scholar 

  12. M. Marjanovic, S. Giannakis, D. Grandjean, L. F. de Alencastro and C. Pulgarin, Water Res., 2018, 140, 220–231.

    Article  CAS  Google Scholar 

  13. J. Rodríguez-Chueca, C. García-Cañibano, R.-J. Lepistö, Á. Encinas, J. Pellinen and J. Marugán, J. Hazard. Mater., 2018, DOI: 10.1016/J.JHAZMAT.2018.04.044, in press.

  14. A. Bianco, M. I. Polo-López, P. Fernández-Ibáñez, M. Brigante and G. Mailhot, Water Res., 2017, 118, 249–260.

    Article  CAS  Google Scholar 

  15. P. Sun, C. Tyree and C.-H. Huang, Environ. Sci. Technol., 2016, 50, 4448–4458.

    Article  CAS  Google Scholar 

  16. J. Moreno-Andrés, L. Romero-Martínez, A. Acevedo-Merino and E. Nebot, Sci. Total Environ., 2017, 581–582, 144–152.

    Article  Google Scholar 

  17. J. E. Grebel, J. J. Pignatello and W. A. Mitch, Environ. Sci. Technol., 2010, 44, 6822–6828.

    Article  CAS  Google Scholar 

  18. Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos and D. D. Dionysiou, Water Res., 2016, 95, 195–204.

    Article  CAS  Google Scholar 

  19. S. Ahn, T. D. Peterson, J. Righter, D. M. Miles and P. G. Tratnyek, Environ. Sci. Technol., 2013, 47, 11717–11725.

    Article  CAS  Google Scholar 

  20. Y. Qiong Gao, N. Yun Gao, Y. Deng, Y. Qiong Yang and Y. Ma, Chem. Eng. J., 2012, 195–196, 248–253.

    Google Scholar 

  21. J. Moreno-Andrés, L. Romero-Martínez, A. Acevedo-Merino and E. Nebot, Chem. Eng. J., 2016, 283, 1339–1348.

    Article  Google Scholar 

  22. L. Romero-Martínez, J. Moreno-Andrés, A. Acevedo-Merino and E. Nebot, J. Chem. Technol. Biotechnol., 2014, 1203–1210.

  23. J. R. Bolton and K. G. Linden, J. Environ. Eng., 2003, 129, 209–215.

    Article  CAS  Google Scholar 

  24. C. Liang, C. F. Huang, N. Mohanty and R. M. Kurakalva, Chemosphere, 2008, 73, 1540–1543.

    Article  CAS  Google Scholar 

  25. A. H. Geeraerd, V. P. Valdramidis and J. F. Van Impe, Int. J. Food Microbiol., 2005, 102, 95–105.

    Article  CAS  Google Scholar 

  26. K. G. Lindenauer and J. L. Darby, Water Res., 1994, 28, 805–817.

    Article  CAS  Google Scholar 

  27. Z. Frontistis, E. Hapeshi, D. Fatta-Kassinos and D. Mantzavinos, Photochem. Photobiol. Sci., 2015, 14, 528–535.

    Article  CAS  Google Scholar 

  28. J. L. Acero, F. Javier Benítez, F. J. Real and E. Rodríguez, Sep. Purif. Technol., 2018, 201, 41–50.

    Article  CAS  Google Scholar 

  29. M. Amasha, A. Baalbaki and A. Ghauch, Chem. Eng. J., 2018, 350, 395–410.

    Article  CAS  Google Scholar 

  30. G. D. Fang, D. D. Dionysiou, Y. Wang, S. R. Al-Abed and D. M. Zhou, J. Hazard. Mater., 2012, 227–228, 394–401.

    Article  Google Scholar 

  31. Y. Yang, J. J. Pignatello, J. Ma and W. A. Mitch, Environ. Sci. Technol., 2014, 48, 2344–2351.

    Article  CAS  Google Scholar 

  32. M. Nihemaiti, D. B. Miklos, U. Hübner, K. G. Linden, J. E. Drewes and J.-P. Croué, Water Res., 2018, 145, 487–497.

    Article  CAS  Google Scholar 

  33. O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal., B, 2010, 98, 27–38.

    Article  CAS  Google Scholar 

  34. D. N. Wordofa, S. L. Walker and H. Liu, Environ. Sci. Technol. Lett., 2017, 4, 154–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Moreno-Andrés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Andrés, J., Quintero, R.R., Acevedo-Merino, A. et al. Disinfection performance using a UV/persulfate system: effects derived from different aqueous matrices. Photochem Photobiol Sci 18, 878–883 (2019). https://doi.org/10.1039/c8pp00304a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00304a

Navigation