Skip to main content
Log in

Effect of thiophene substitution on the intersystem crossing of arene photosensitizers

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effect of thienyl substitution on the intersystem crossing (ISC) of a few arenes was studied using steady state and time-resolved transient absorption and emission spectroscopies, as well as DFT/TDDFT computations. We found that the phenyl and thienyl substituents generally induce red-shifted absorptions for the chromophores, and the DFT/TDDFT computations show that the red-shifted absorption and emission are due to the increased HOMO and the reduced LUMO energy levels. Nanosecond transient absorption spectra indicate the formation of a triplet state, the triplet state lifetime is up to 282 μs, and the singlet oxygen quantum yields (ΦΔ) are up to 60%. DFT/TDDFT computations indicate that introducing the thienyl substituent alters the relative singlet/triplet excited state energy levels, and the energy level-matched S1/T2 states are responsible for the enhanced ISC of the thienyl compounds. This information is useful for the design of heavy atom-free triplet photosensitizers and for the study of the fundamental photochemistry of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kikuchi, K. Shibata, R. Kumasaka and M. Yagi, Excited states of menthyl anthranilate: a UV-A absorber, Photochem. Photobiol. Sci., 2013, 12, 246–253.

    Article  CAS  PubMed  Google Scholar 

  2. D. P. Ferreira, D. S. Conceicao, V. R. A. Ferreira, V. C. Graca, P. F. Santos and L. F. V. Ferreira, Photochemical properties of squarylium cyanine dyes, Photochem. Photobiol. Sci., 2013, 12, 1948–1959.

    Article  CAS  PubMed  Google Scholar 

  3. T. Tsuchiya, A. Kikuchi, N. Oguchi-Fujiyama, K. Miyazawa and M. Yagi, Photoexcited triplet states of UV-B absorbers: ethylhexyl triazone and diethylhexylbutamido triazone, Photochem. Photobiol. Sci., 2015, 14, 807–814.

    Article  CAS  PubMed  Google Scholar 

  4. J. Al Anshori, T. Slanina, E. Palao and P. Klan, The internal heavy-atom effect on 3-phenylselanyl and 3-phenyltellanyl BODIPY derivatives studied by transient absorption spec-troscopy, Photochem. Photobiol. Sci., 2016, 15, 250–259.

    Article  PubMed  Google Scholar 

  5. M. E. El-Khouly, A. El-Refaey, W. Nam, S. Fukuzumi, O. Goktug and M. Durmus, A subphthalocyanine-pyrene dyad: electron transfer and singlet oxygen generation, Photochem. Photobiol. Sci., 2017, 16, 1512–1518.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Shamoto, M. Yagi, N. Oguchi-Fujiyama, K. Miyazawa and A. Kikuchi, Photophysical properties of hexyl diethyl-aminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-absor-ber, Photochem. Photobiol. Sci., 2017, 16, 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  7. H. D. Prasad and K. Burkhard, The photocatalyzed meer-wein arylation: classic reaction of aryl diazonium salts in a new light, Angew. Chem., Int. Ed., 2013, 52, 4734–4743.

    Article  CAS  Google Scholar 

  8. D. Ravelli, M. Fagnoni and A. Albini, Photoorganocatalysis. What for?, Chem. Soc. Rev., 2013, 42, 97–113.

    Article  CAS  PubMed  Google Scholar 

  9. S. Fukuzumi and K. Ohkubo, Selective photocatalytic reactions with organic photocatalysts, Chem. Sci., 2013, 4, 561–574.

    Article  CAS  Google Scholar 

  10. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, BODIPY dyes in photodynamic therapy, Chem. Soc. Rev., 2013, 42, 77–88.

    Article  CAS  PubMed  Google Scholar 

  11. O. J. Stacey and S. J. A. Pope, New avenues in the design and potential application of metal complexes for photo-dynamic therapy, RSCAdv., 2013, 3, 25550–25564.

    CAS  Google Scholar 

  12. S. G. Awuah and Y. You, Boron dipyrromethene (BODIPY)- based photosensitizers for photodynamic therapy, RSC Adv., 2012, 2, 11169–11183.

    Article  CAS  Google Scholar 

  13. Y. Wu and W. Zhu, Organic sensitizers from D-n-A to D-A-n-A: Effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances, Chem. Soc. Rev., 2013, 42, 2039–2058.

    Article  PubMed  Google Scholar 

  14. T. N. Singh-Rachford and F. N. Castellano, Photon upcon-version based on sensitized triplet-triplet annihilation, Coord. Chem. Rev., 2010, 254, 2560–2573.

    Article  CAS  Google Scholar 

  15. C. Paola, Energy up-conversion by low-power excitation: new applications of an old concept, Chem. - Eur. J., 2011, 17, 9560–9564.

    Article  CAS  Google Scholar 

  16. A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and F. Meinardi, Low power, non-coherent sensitized photon up-conversion: modelling and perspectives, Phys. Chem. Chem. Phys., 2012, 14, 4322–4332.

    Article  CAS  PubMed  Google Scholar 

  17. J. Zhou, Q. Liu, W. Feng, Y. Sun and F. Li, Upconversion luminescent materials: advances and applications, Chem. Rev., 2015, 115, 395–465.

    Article  CAS  PubMed  Google Scholar 

  18. C. Ye, L. Zhou, X. Wang and Z. Liang, Photon upconver-sion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA), Phys. Chem. Chem. Phys., 2016, 18, 10818–10835.

    Article  CAS  PubMed  Google Scholar 

  19. P. Duan, N. Yanai and N. Kimizuka, Photon upconverting liquids: matrix-free molecular upconversion systems func-tioning in air, J. Am. Chem. Soc., 2013, 135, 19056–19059.

    Article  CAS  PubMed  Google Scholar 

  20. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, Sausalito, CA. 2009.

    Google Scholar 

  21. Y. Lu, J. Wang, N. McGoldrick, X. Cui, J. Zhao, C. Caverly, B. Twamley, G. M. Ô. Maille, B. Irwin, R. Conway-Kenny and S. M. Draper, Iridium(iiI) complexes bearing pyrene-functionalized 1,10-phenanthroline ligands as highly efficient sensitizers for triplet-triplet annihilation upcon-version, Angew. Chem., Int. Ed., 2016, 55, 14688–14692.

    Article  CAS  Google Scholar 

  22. W. Wu, J. Zhao, J. Sun and S. Guo, Light-harvesting fuller-ene dyads as organic triplet photosensitizers for triplet-triplet annihilation upconversions, J. Org. Chem., 2012, 77, 5305–5312.

    Article  CAS  PubMed  Google Scholar 

  23. J. Peng, X. Guo, X. Jiang, D. Zhao and Y. Ma, Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films, Chem. Sci., 2016, 7, 1233–1237.

    Article  CAS  PubMed  Google Scholar 

  24. N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi and N. Kimizuka, Increased vis-to-UV upconversion perform-ance by energy level matching between a TADF donor and high triplet energy acceptors, J. Mater. Chem. C, 2016, 4, 6447–6451.

    Article  CAS  Google Scholar 

  25. M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle and M. O. Senge, Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro, J. Am. Chem. Soc., 2017, 139, 6282–6285.

    Article  CAS  PubMed  Google Scholar 

  26. Z. E. X. Dance, S. M. Mickley, T. M. Wilson, A. B. Ricks, A. M. Scott, M. A. Ratner and M. R. Wasielewski, Intersystem crossing mediated by photoinduced intra-molecular charge transfer: julolidine-anthracene mole-cules with perpendicular n Systems, J. Phys. Chem. A, 2008, 112, 4194–4201.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Liu and J. Zhao, Visible light-harvesting perylenebisi-mide-fullerene (C60) dyads with bidirectional “ping-pong” energy transfer as triplet photosensitizers for photooxida-tion of 1,5-dihydroxynaphthalene, Chem. Commun., 2012, 48, 3751–3753.

    Article  CAS  Google Scholar 

  28. L. Huang, X. Yu, W. Wu and J. Zhao, Styryl bodipy-C60 dyads as efficient heavy-atom-free organic triplet photosen-sitizers, Org. Lett., 2012, 14, 2594–2597.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc and E. U. Akkaya, Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action, Angew. Chem., Int. Ed., 2011, 50, 11937–11941.

    Article  CAS  Google Scholar 

  30. S. Duman, Y. Cakmak, S. Kolemen, E. U. Akkaya and Y. Dede, Heavy atom free singlet oxygen generation: doubly substituted configurations dominate S1 states of bis-BODIPYs, J. Org. Chem., 2012, 77, 4516–4527.

    Article  CAS  PubMed  Google Scholar 

  31. B. Martin, K. Robin, L. Stephan, K. Christian, K. Silke, X. Xiulian, V. Barbara and F. Lucia, Bis(BF2)-2,2'- Bidipyrrins (BisBODIPYs): highly fluorescent BODIPY dimers with large stokes shifts, Chem. - Eur. J., 2008, 14, 2976–2983.

    Article  CAS  Google Scholar 

  32. J. Pina, J. S. de Melo, D. Breusov and U. Scherf, Donor-acceptor-donor thienyl/bithienyl benzothiadiazole/quinoxa-line model oligomers: experimental and theoretical studies, Phys. Chem. Chem. Phys., 2013, 15, 15204–15213.

    Article  CAS  PubMed  Google Scholar 

  33. M. Pederzoli and J. Pittner, A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and sele-nophene, J. Chem. Phys., 2017, 146, 114101.

    Article  PubMed  CAS  Google Scholar 

  34. A. Prlj, B. F. E. Curchod and C. Corminboeuf, Excited state dynamics of thiophene and bithiophene: new insights into theoretically challenging systems, Phys. Chem. Chem. Phys., 2015, 17, 14719–14730.

    Article  CAS  PubMed  Google Scholar 

  35. J. Pina, J. Seixas de Melo, H. D. Burrows, T. W. Bünnagel, D. Dolfen, C. J. Kudla and U. Scherf, Photophysical and spectroscopic investigations on (oligo)thiophene-arylene step-ladder copolymers. the interplay of conformational relaxation and on-chain energy transfer, J. Phys. Chem. B, 2009, 113, 15928–15936.

    Article  CAS  PubMed  Google Scholar 

  36. S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf and C. M. Marian, Excited states of thiophene: ring opening as deactivation mechanism, Phys. Chem. Chem. Phys., 2008, 10, 380–392.

    Article  CAS  PubMed  Google Scholar 

  37. B. Kraabel, D. Moses and A. J. Heeger, Direct observation of the intersystem crossing in poly(3-octylthiophene), J. Chem. Phys., 1995, 103, 5102–5108.

    Article  CAS  Google Scholar 

  38. S. M. Fonseca, J. Pina, L. G. Arnaut, J. Seixas de Melo, H. D. Burrows, N. Chattopadhyay, L. Alcacer, A. Charas, J. Morgado, A. P. Monkman, U. Asawapirom, U. Scherf, R. Edge and S. Navaratnam, Triplet-state and singlet oxygen formation in fluorene-based alternating copoly-mers, J. Phys. Chem. B, 2006, 110, 8278–8283.

    Article  CAS  PubMed  Google Scholar 

  39. C. K. Jaladanki, N. Taxak, R. A. Varikati and P. V. Bharatam, Toxicity originating from thiophene containing drugs: exploring the mechanism using quantum chemical methods, Chem. Res. Toxicol., 2015, 28, 2364–2376.

    Article  CAS  PubMed  Google Scholar 

  40. S. M. Cohen, S. Fukushima, N. J. Gooderham, F. P. Guengerich, S. S. Hecht, I. M. C. M. Rietjens, R. L. Smith, M. Bastaki, C. L. Harman, M. M. McGowen, L. G. Valerio Jr., and S. V. Taylor, Safety evaluation of substituted thiophenes used as flavoring ingredients, Food Chem. Toxicol., 2017, 99, 40–59.

    Article  CAS  PubMed  Google Scholar 

  41. A. Bolduc, S. Dufresne, G. S. Hanan and W. G. Skene, Synthesis, photophysics, and electrochemistry of thiophene-pyridine and thiophene-pyrimidine dyad comonomers, Can. J. Chem., 2010, 88, 236–246.

    Article  CAS  Google Scholar 

  42. X.-D. Jiang, S. Li, B. Le Guennic, D. Jacquemin, D. Escudero and L. Xiao, Singlet oxygen generation pro-perties of isometrically dibromated thienyl-containing aza-BODIPYs, Phys. Chem. Chem. Phys., 2016, 18, 32686–32690.

    Article  CAS  PubMed  Google Scholar 

  43. S. Ji, J. Ge, D. Escudero, Z. Wang, J. Zhao and D. Jacquemin, Molecular structure-intersystem crossing relationship of heavy-atom-free BODIPY triplet photosensi-tizers, J. Org. Chem., 2015, 80, 5958–5963.

    Article  CAS  PubMed  Google Scholar 

  44. S. G. Awuah, J. Polreis, V. Biradar and Y. You, Singlet oxygen generation by novel NIR BODIPY Dyes, Org. Lett., 2011, 13, 3884–3887.

    Article  CAS  PubMed  Google Scholar 

  45. F. Yukruk, A. L. Dogan, H. Canpinar, D. Guc and E. U. Akkaya, Water-soluble green perylenediimide (PDI) dyes as potential sensitizers for photodynamic therapy, Org. Lett., 2005, 7, 2885–2887.

    Article  CAS  PubMed  Google Scholar 

  46. Z. Lei, L. Kecheng, Z. Jiangwen, S. Wenlin, Z. Yuanhong, T. Shaoying, G. Yuwei, X. Yufang, L. Jianwen and Q. Xuhong, One small molecule as a theranostic agent: naphthalimide dye for subcellular fluorescence localization and photodynamic therapy in vivo, MedChemComm, 2016, 7, 1171–1175.

    Article  CAS  Google Scholar 

  47. M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle and M. O. Senge, Generation of triplet excited state via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro, J. Am. Chem. Soc., 2017, 139, 6282–6285.

    Article  CAS  PubMed  Google Scholar 

  48. Z. Jin, N. Li, C. Wang, H. Jiang, J. Lu and Q. Zhou, Synthesis and fluorescence property of some novel 1,8-naphthalimide derivatives containing a thiophene ring at the C-4 position, Dyes Pigm., 2013, 96, 204–210.

    Article  CAS  Google Scholar 

  49. R. Greiner, T. Schlucker, D. Zgela and H. Langhals, Fluorescent aryl naphthalene dicarboximides with large stokes shifts and strong solvatochromism controlled by dynamics and molecular geometry, J. Mater. Chem. C, 2016, 4, 11244–11252.

    Article  CAS  Google Scholar 

  50. N. J. Turro, Modern Molecular Photochemistry, University Science Books, 1991.

    Google Scholar 

  51. V. Gray, D. Dzebo, A. Lundin, J. Alborzpour, M. Abrahamsson, B. Albinson and K. Moth-poulsen, Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet-triplet annihilation photon upconversion, J. Mater. Chem. C, 2015, 3, 11111–11121.

    Article  CAS  Google Scholar 

  52. J. Pina and J. S. Seixas de Melo, A comprehensive investi-gation of the electronic spectral and photophysical pro-perties of conjugated naphthalene-thiophene oligomers, Phys. Chem. Chem. Phys., 2009, 11, 8706–8713.

    Article  CAS  PubMed  Google Scholar 

  53. A. C. Kanarr, B. L. Rupert, S. Hammond, J. V. D. Lagemaat, J. C. Johnson and A. J. Ferguson, Excited-state processes in first-generation phenyl-cored thiophene dendrimers, J. Phys. Chem. A, 2011, 115, 2515–2522.

    Article  CAS  PubMed  Google Scholar 

  54. D. Beljonne, Z. Shuai, G. Pourtois and J. L. Bredas, Spin-orbit coupling and intersystem crossing in conju-gated polymers: a configuration interaction description, J. Phys. Chem. A, 2001, 105, 3899–3907.

    Article  CAS  Google Scholar 

  55. W. Paa, J. P. Yang and S. Rentsch, Ultrafast intersystem crossing in thiophene oligomers investigated by fs-pump-probe spectroscopy, Synth. Met., 2001, 119, 525–526.

    Article  CAS  Google Scholar 

  56. K. Xu, J. Zhao, D. Escudero, Z. Mahmood and D. Jacquemin, Controlling triplet-triplet annihilation upconversion by tuning the PET in aminomethyleneanthracene derivatives, J. Phys. Chem. C, 2015, 119, 23801–23812.

    Article  CAS  Google Scholar 

  57. X. Cui, A. Charaf-Eddin, J. Wang, B. Le Guennic, J. Zhao and D. Jacquemin, Perylene-derived triplet acceptors with optimized excited state energy levels for triplet-triplet annihilation assisted upconversion, J. Org. Chem., 2014, 79, 2038–2048.

    Article  CAS  PubMed  Google Scholar 

  58. X. Cui, A. M. El-Zohry, Z. Wang, J. Zhao and O. F. Mohammed, Homo-or hetero-triplet-triplet annihil-ation? a case study with perylene-BODIPY dyads/triads, J. Phys. Chem. C, 2017, 121, 16182–16192.

    Article  CAS  Google Scholar 

  59. M. Vesna, V. Diego, B. Igor, L. D. L. Max and V. Eric, Photoinduced symmetry-breaking charge separation: The direction of the charge transfer, Angew. Chem., Int. Ed., 2011, 50, 7596–7598.

    Article  CAS  Google Scholar 

  60. P. Kolle, T. Schnappinger and R. de Vivie-Riedle, Deactivation pathways of thiophene and oligothiophenes: internal conversion versus intersystem crossing, Phys. Chem. Chem. Phys., 2016, 18, 7903–7915.

    Article  PubMed  CAS  Google Scholar 

  61. C. Remy, C. Allain and I. Leray, Synthesis and photo-physical properties of extended n-conjugated naphthali-mides, Photochem. Photobiol. Sci., 2017, 16, 539–546.

    Article  CAS  PubMed  Google Scholar 

  62. H. Guo, M. L. Muro-Small, S. Ji, J. Zhao and F. N. Castellano, Naphthalimide phosphorescence finally exposed in a platinum(II) diimine complex, Inorg. Chem., 2010, 49, 6802–6804.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the NSFC (21473020, 21673031, 21761142005, 21603021, 21421005, and 21273028), the State Key Laboratory of Fine Chemicals (ZYTS201801), and the Fundamental Research Funds for the Central Universities (Grants DUT16TD25, DUT15ZD224, and DUT2016TB12) for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, F., Zhao, J., Hussain, M. et al. Effect of thiophene substitution on the intersystem crossing of arene photosensitizers. Photochem Photobiol Sci 17, 1794–1803 (2018). https://doi.org/10.1039/c8pp00230d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00230d

Navigation