Skip to main content
Log in

Selective sensing of nitric oxide by a 9,10-phenanthroquinone–pyridoxal based fluorophore

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this article, we have designed and synthesized a new, convenient and efficient phenanthroquinone–pyridoxal based fluorogenic probe PQPY, highly suitable for the selective and sensitive detection of nitric oxide in an aerated aqueous (7: 3/H2O: MeCN) medium at pH 7.0 (10 mM HEPES buffer). Upon addition of nitric oxide, this probe exhibits emission in the green region (λem = 505 nm) which is ascribed to ICT (intramolecular charge transfer) from the phenanthroquinone moiety to the imidazole–N–N=O fragment. The apparent formation constant, Kf, of the NO product of the ligand is (1.00 ± 0.2) × 105 M−1 and the LOD is 78 nM. The substantial enhancement of the life-time of the ligand (τ0 = 2.68 ns) occurs due to binding with nitric oxide (τ0 = 3.96 ns). This probe is low cytotoxicity, cell permeable and suitable for living cell imaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bryan, M. B. Grisham, Methods to detect nitric oxide and its metabolites in biological samples, Free Radicals Biol. Med., 2007, 43, 645–657.

    Article  CAS  Google Scholar 

  2. D. S. Bredt, Endogenous nitric oxide synthesis: Biological functions and pathophysiology, Free Radicals Biol. Med., 1999, 31, 577–596.

    Article  CAS  Google Scholar 

  3. M. Kelm, Nitric oxide metabolism and breakdown, Biochim. Biophys. Acta, 1999, 1411, 273–289.

    Article  CAS  Google Scholar 

  4. B. Brune, S. Dimmeler, L. M. Vedia, E. G. Lapetina, Nitric oxide: A signal for ADP-ribosylation of proteins, Life Sci., 1994, 54, 61–70.

    Article  CAS  Google Scholar 

  5. B. J. Privett, J. H. Shin, M. H. Schoenfisch, Electrochemical nitric oxide sensors for physiological measurements, Chem. Soc. Rev., 2010, 39, 1925–1935.

    Article  CAS  Google Scholar 

  6. W. Hu, D. Boateng, J. Kong, X. Zhang, Advancement of Fluorescent Methods for Detection of Nitric Oxide, Austin J. Biosens. Bioelectron., 2015, 1, 1–9.

    Google Scholar 

  7. Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene Chromophore-Rational Design of Potentially Useful Bioimaging Fluorescence Probe, J. Am. Chem. Soc., 2004, 126, 3357–3367.

    Article  CAS  Google Scholar 

  8. E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, Highly Sensitive Near-Infrared Fluorescent Probes for Nitric Oxide and Their Application to Isolated Organs, J. Am. Chem. Soc., 2005, 127, 3684–3685.

    Article  CAS  Google Scholar 

  9. Y. Yang, S. K. Seidlits, M. M. Adams, V. M. Lynch, C. E. Schmidt, E. V. Anslyn, J. B. Shear, A highly selective low-background fluorescent imaging agent for nitric oxide, J. Am. Chem. Soc., 2010, 132, 13114–14116.

    Article  CAS  Google Scholar 

  10. L. E. McQuade, M. D. Pluth, S. J. Lippard, Mechanism of Nitric Oxide Reactivity and Fluorescence Enhancement of the NO-Specific Probe CuFL1, Inorg. Chem., 2010, 49, 8025–8033.

    Article  CAS  Google Scholar 

  11. L. E. McQuade, S. J. Lippard, Fluorescence-Based Nitric Oxide Sensing by Cu(II) Complexes That Can Be Trapped in Living Cells, Inorg. Chem., 2010, 49, 7464–7471.

    Article  CAS  Google Scholar 

  12. M. H. Lim, S. J. Lippard, Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin Fluorophore Complexes, Inorg. Chem., 2004, 43, 6366–6370.

    Article  CAS  Google Scholar 

  13. A. Beltrán, M. I. Burguete, D. R. Abánades, S. D. Pérez-Sala, V. Luis, F. Galindo, Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid, Chem. Commun., 2014, 50, 3579–3581.

    Article  Google Scholar 

  14. M. H. Lim, S. J. Lippard, Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution, J. Am. Chem. Soc., 2005, 127, 12170–12171.

    Article  CAS  Google Scholar 

  15. M. H. Lim, S. J. Lippard, Fluorescent Nitric Oxide Detection by Copper Complexes Bearing Anthracenyl and Dansyl Fluorophore Ligands, Inorg. Chem., 2006, 45, 8980–8989.

    Article  CAS  Google Scholar 

  16. C. Sun, W. Shi, Y. Song, W. Chen, H. Ma, An unprecedented strategy for selective and sensitive fluorescence detection of nitric oxide based on its reaction with a selenide, Chem. Commun., 2011, 47, 8638–8640.

    Article  CAS  Google Scholar 

  17. R. C. Smith, A. G. Tennyson, M. H. Lim, S. J. Lippard, Conjugated Polymer-Based Fluorescence Turn-On Sensor for Nitric Oxide, Org. Lett., 2005, 7, 3573–3575.

    Article  CAS  Google Scholar 

  18. T. W. Shiue, Y. H. Chen, C. M. Wu, G. Singh, H. Y. Chen, C. H. Hung, W. F. Liaw, Y. M. Wang, Nitric Oxide Turn-on Fluorescent Probe Based on Deamination of Aromatic Primary Monoamines, Inorg. Chem., 2012, 51, 5400–5408.

    Article  CAS  Google Scholar 

  19. H. Kojima, M. Hirotani, N. Nakatsubo, K. Kikuchi, Ys. Urano, T. Higuchi, Y. Hirata, T. Nagano, Bioimaging of Nitric Oxide with Fluorescent Indicators Based on the Rhodamine Chromophore, Anal. Chem., 2001, 73, 1967–1973.

    Article  CAS  Google Scholar 

  20. H. Yu, X. Zhang, Y. Xiao, W. Zou, L. Wang, L. Jin, Targetable Fluorescent Probe for Monitoring Exogenous and Endogenous NO in Mitochondria of Living Cells, Anal. Chem., 2013, 85, 7076–7084.

    Article  CAS  Google Scholar 

  21. X. Dong, C. H. Heo, S. Chen, H. M. Kim, Z. Liu, Quinoline-Based Two-Photon Fluorescent Probe for Nitric Oxide in Live Cells and Tissues, Anal. Chem., 2014, 86, 308–311.

    Article  CAS  Google Scholar 

  22. A. S. M. Islam, R. Bhowmick, K. Pal, A. Katarkar, K. Chaudhuri, M. Ali, A Smart Molecule for Selective Sensing of Nitric Oxide: Conversion of NO to HSNO; Relevance of Biological HSNO Formation, Inorg. Chem., 2017, 56, 4324–4331.

    Article  CAS  Google Scholar 

  23. A. J. Beneto, V. Thiagarajanb, A. Siva, A tunable ratiometric pH sensor based on phenanthro[9,10-d]imidazole covalently linked with vinylpyridine, RSC Adv., 2015, 5, 67849.

    Article  CAS  Google Scholar 

  24. Š. Mesároš, S. Grunfeld, A. Mesárošová, D. Bustin, T. Malinski, Determination of nitric oxide saturated (stock) solution by chronoamperometry on a porphyrine microelectrode, Anal. Chim. Acta, 1997, 339, 265–270.

    Article  Google Scholar 

  25. A. T. Wrobel, T. C. Johnstone, A. Deliz Liang, S. J. Lippard, P. Rivera-Fuentes, A Fast and Selective Near-Infrared Fluorescent Sensor for Multicolor Imaging of Biological Nitroxyl (HNO), J. Am. Chem. Soc., 2014, 136, 4697–4705.

    Article  CAS  Google Scholar 

  26. S. Miyamoto, G. R. Martinez, A. P. B. Martins, M. H. G. Medeiros, P. DiMascio, Direct Evidence of Singlet Molecular Oxygen [O2 (1Δg)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite, J. Am. Chem. Soc., 2003, 125, 4510–4517.

    Article  CAS  Google Scholar 

  27. Z. Mao, H. Jiang, Z. Li, C. Zhong, W. Zhang, Z. Liu, An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide, Chem. Sci., 2017, 8, 4533.

    Article  CAS  Google Scholar 

  28. A. S. M. Islam, R. Alam, A. Katarkar, K. Chaudhuri, M. Ali, Di-oxime based selective fluorescent probe for arsenate and arsenite ions in a purely aqueous medium with living cell imaging applications and H-bonding induced microstructure formation, Analyst, 2015, 140, 2979–2983.

    Article  CAS  Google Scholar 

  29. K. Tsuge, F. DeRosa, M. D. Lim, P. C. Ford, Intramolecular Reductive Nitrosylation: Reaction of Nitric Oxide and a Copper(II) Complex of a Cyclam Derivative with Pendant Luminescent Chromophores, J. Am. Chem. Soc., 2004, 126, 6564–6565.

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, s. J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

Download references

Acknowledgments

Financial supports from the DST (Ref. No. 809(Sanc)/ST/P/S&T/4G-9/2104), West Bengal and the CSIR (Ref. 01(2896)/17/EMR-II), New Delhi, India are gratefully acknowledged. D. Maiti thanks DST-INSPIRE for the financial assistance as a junior Research Fellow (JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahammad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, D., Islam, A.S.M., Sasmal, M. et al. Selective sensing of nitric oxide by a 9,10-phenanthroquinone–pyridoxal based fluorophore. Photochem Photobiol Sci 17, 1213–1221 (2018). https://doi.org/10.1039/c8pp00115d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00115d

Navigation