Skip to main content

Advertisement

Log in

A triple action chemosensor for Cu2+ by chromogenic, Cr3+ by fluorogenic and CN by relay recognition methods with bio-imaging of HeLa cells

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A triple action chemosensor (R1) bearing a rhodamine and thiophene moiety was synthesized by a simple condensation reaction. The sensing behaviour and selectivity of the synthesized chemosensor toward metal ions were studied by UV-Vis and fluorescence spectroscopy. The chemosensor recognized Cu2+ and Cr3+ ions with significant changes in UV-Vis absorbance and fluorescence intensity. The results showed that Cr3+ induced greater fluorescence enhancement whereas Cu2+ ions bound strongly with the receptor by showing a strong absorption band at 554 nm but with weak fluorescence. A visible colour change was observed by the addition of Cu2+ and that colour change is due to the opening of the spirolactam ring triggered by the addition of Cu2+ ions. Job’s plot analysis indicated a 1: 2 and 1: 1 binding stoichiometry between the chemosensor and Cr3+/Cu2+. Subsequently, the R1 − Cu2+ complex chemosensor was employed to detect CN in the presence of different anions, such as F, Cl, Br, I, AcO, H2PO4, HSO4, NO3 and OH. In addition, the live cell imaging of HeLa cells using R1 and Cr3+ was demonstrated successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Sun, H. Li, D. Guo, Y. Liu, Z. Tian, and S. Yan, A novel piperazine-bis (rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu2+ and its application as an INHIBIT logic device, J. Lumin., 2015, 167, 156–162.

    Article  CAS  Google Scholar 

  2. X. Yan, D. Li, C. Hou, X. Wang, W. Zhou, M. Liu, and T. Ye, Comparison of response towards NO2 and H2S of PPy and PPy/TiO2 as SAW sensitive films, Sens. Actuators, B., 2012, 161, 329–333.

    Article  CAS  Google Scholar 

  3. Y.-S. Chiu, C.-T. Lee, L.-R. Lou, S.-C. Ho, and C.-T. Chuang, Wide linear sensing sensors using ZnO: Ta extended-gate field-effect-transistors, Sens. Actuators, B., 2013, 188, 944–948.

    Article  CAS  Google Scholar 

  4. R. Ramette, and E. Sandell, Rhodamine B equilibria, J. Am. Chem. Soc., 1956, 78, 4872–4878.

    Article  CAS  Google Scholar 

  5. Y. Zhao, X.-B. Zhang, Z.-X. Han, L. Qiao, C.-Y. Li, L.-X. Jian, G.-L. Shen, and R.-Q. Yu, Highly Sensitive and Selective Colorimetric and Off− On Fluorescent Chemosensor for Cu2+ in Aqueous Solution and Living Cells, Anal. Chem., 2009, 81, 7022–7030.

    Article  CAS  PubMed  Google Scholar 

  6. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev., 2000, 205, 59–83.

    Article  CAS  Google Scholar 

  7. B. Valeur, and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.

    Article  CAS  Google Scholar 

  8. X. Chen, T. Pradhan, F. Wang, J. S. Kim, and J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev., 2011, 112, 1910–1956.

    Article  PubMed  CAS  Google Scholar 

  9. M. Beija, C. A. Afonso, and J. M. Martinho, Synthesis and applications of Rhodamine derivatives as fluorescent probes, Chem. Soc. Rev., 2009, 38, 2410–2433.

    Article  CAS  PubMed  Google Scholar 

  10. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev., 2008, 37, 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  11. J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, and W. Liu, Tuning the selectivity of two chemosensors to Fe(iii) and Cr(iii), Org. Lett., 2007, 9, 4567–4570.

    Article  CAS  PubMed  Google Scholar 

  12. A. Barba-Bon, L. Calabuig, A. M. Costero, S. Gil, R. Martínez-Máñez, and F. Sancenón, Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+ versus Fe3+ in aqueous media, RSC Adv., 2014, 4, 8962–8965.

    Article  CAS  Google Scholar 

  13. A. Prescha, M. Krzysik, K. Zabłocka-Słowińska, and H. Grajeta, Effects of exposure to dietary chromium on tissue mineral contents in rats fed diets with fiber, Biol. Trace Elem. Res., 2014, 159, 325–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. S. Deka, V. Mani, M. Kumar, Z. S. Shiwajirao, A. K. Tyagi, and H. Kaur, Body condition, energy balance and immune status of periparturient Murrah buffaloes (Bubalus bubalis) supplemented with inorganic chromium, Biol. Trace Elem. Res., 2014, 161, 57–68.

    Article  CAS  PubMed  Google Scholar 

  15. S. Goswami, K. Aich, S. Das, A. K. Das, D. Sarkar, S. Panja, T. K. Mondal, and S. Mukhopadhyay, A red fluorescence ‘off–on’molecular switch for selective detection of Al3+, Fe3+ and Cr3+: experimental and theoretical studies along with living cell imaging, Chem. Commun., 2013, 49, 10739–10741.

    Article  CAS  Google Scholar 

  16. A. K. Singh, V. Gupta, and B. Gupta, Chromium(iii) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta., 2007, 585, 171–178.

    Article  CAS  PubMed  Google Scholar 

  17. C. J. O’Hara, J. E. Groopman, and M. Federman, The ultrastructural and immunohistochemical demonstration of viral particles in lymph nodes from human immunodeficiency virus-related and non-human immunodeficiency virus-related lymphadenopathy syndromes, Hum. Pathol., 1988, 19, 545–549.

    Article  PubMed  Google Scholar 

  18. M. Ślusarczyk, and M. Ruszkowska, The effect of copper on the content and composition of saccharides in oat plants, Acta Agrobot., 1986, 39, 261–276.

    Article  Google Scholar 

  19. B. Dell, and T. Bywaters, Copper deficiency in young Eucalyptus maculata plantations, Can. J. For. Res., 1989, 19, 427–431.

    Article  CAS  Google Scholar 

  20. M. Krahmer, and R. Prohaska, Characterization of human red cell Rh (Rhesus-) specific polypeptides by limited proteolysis, FEBS Lett., 1987, 226, 105–108.

    Article  CAS  PubMed  Google Scholar 

  21. N. Kumari, N. Dey, and S. Bhattacharya, Remarkable role of positional isomers in the design of sensors for the ratiometric detection of copper and mercury ions in water, RSC Adv., 2014, 4, 4230–4238.

    Article  CAS  Google Scholar 

  22. J. Wang, H. Li, L. Long, G. Xiao, and D. Xie, Fast responsive fluorescence turn-on sensor for Cu2+ and its application in live cell imaging, J. Lumin., 2012, 132, 2456–2461.

    Article  CAS  Google Scholar 

  23. M. Kaur, Y.-H. Ahn, K. Choi, M. J. Cho, and D. H. Choi, A bifunctional colorimetric fluorescent probe for Hg2+ and Cu2+ based on a carbazole–pyrimidine conjugate: chromogenic and fluorogenic recognition on TLC, silica-gel and filter paper, Org. Biomol. Chem., 2015, 13, 7149–7153.

    Article  CAS  PubMed  Google Scholar 

  24. V. Dujols, F. Ford, and A. W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(ii) ion in water, J. Am. Chem. Soc., 1997, 119, 7386–7387.

    Article  CAS  Google Scholar 

  25. W. Premasiri, R. Clarke, S. Londhe, and M. Womble, Determination of cyanide in waste water by low-resolution surface enhanced Raman spectroscopy on sol-gel substrates, J. Raman Spectrosc., 2001, 32, 919–922.

    Article  CAS  Google Scholar 

  26. X. Bao, Q. Cao, X. Nie, Y. Zhou, R. Ye, B. Zhou, and J. Zhu, Design and synthesis of a novel chromium(iii) selective fluorescent chemosensor bearing a thiodiacetamide moiety and two rhodamine B fluorophores, Sens. Actuators, B., 2015, 221, 930–939.

    Article  CAS  Google Scholar 

  27. D. Li, C.-Y. Li, H.-R. Qi, K.-Y. Tan, and Y.-F. Li, Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells, Sens. Actuators, B., 2016, 223, 705–712.

    Article  CAS  Google Scholar 

  28. V. K. Gupta, N. Mergu, and A. K. Singh, Rhodamine-derived highly sensitive and selective colorimetric and off–on optical chemosensors for Cr3+, Sens. Actuators, B., 2015, 220, 420–432.

    Article  CAS  Google Scholar 

  29. Z. Xu, L. Zhang, R. Guo, T. Xiang, C. Wu, Z. Zheng, and F. Yang, A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine B derivative, Sens. Actuators, B., 2011, 156, 546–552.

    Article  CAS  Google Scholar 

  30. Y. Hu, J. Zhang, Y.-Z. Lv, X.-H. Huang, and S.-l. Hu, A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu2+ in aqueous solution, Spectrochim. Acta, Part A., 2016, 157, 164–169.

    Article  CAS  Google Scholar 

  31. K. C. Ko, J.-S. Wu, H. J. Kim, P. S. Kwon, J. W. Kim, R. A. Bartsch, J. Y. Lee, and J. S. Kim, Rationally designed fluorescence ‘turn-on’sensor for Cu2+, Chem. Commun., 2011, 47, 3165–3167.

    Article  CAS  Google Scholar 

  32. H. S. Jung, J. H. Han, Y. Habata, C. Kang, and J. S. Kim, An iminocoumarin–Cu(ii) ensemble-based chemodosimeter toward thiols, Chem. Commun., 2011, 47, 5142–5144.

    Article  CAS  Google Scholar 

  33. Y. H. Lee, N. Park, Y. B. Park, Y. J. Hwang, C. Kang, and J. S. Kim, Organelle-selective fluorescent Cu2+ ion probes: revealing the endoplasmic reticulum as a reservoir for Cu-overloading, Chem. Commun., 2014, 50, 3197–3200.

    Article  CAS  Google Scholar 

  34. M. Ozdemir, A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions, J. Photochem. Photobiol., A., 2016, 318, 7–13.

    Article  CAS  Google Scholar 

  35. M. Li, Y. Sun, L. Dong, Q.-C. Feng, H. Xu, S.-Q. Zang, and T. C. Mak, Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS 2 receptor, Sens. Actuators, B., 2016, 226, 332–341.

    Article  CAS  Google Scholar 

  36. G. Balamurugan, P. Venkatesan, S. P. Wu, and S. Velmathi, Novel ratiometric turn-on fluorescent probe for selective sensing of cyanide ions, effect of substitution and bio-imaging studies, RSC Adv., 2016, 6, 24229–24235.

    Article  CAS  Google Scholar 

  37. G. Balamurugan, and S. Velmathi, Novel chromogenic selective sensors for aqueous cyanide ions under high water content and real sample analysis, Anal. Methods., 2016, 8, 1705–1710.

    Article  CAS  Google Scholar 

  38. K. Jurek, J. Kabatc, K. Kostrzewska, and M. Grabowska, New Fluorescence Probes for Biomolecules, Molecules., 2015, 20, 13071–13079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhao, B. Zheng, J. Du, D. Xiao, and L. Yang, A fluorescent “turn-on” probe for the dual-channel detection of Hg(ii) and Mg(ii) and its application of imaging in living cells, Talanta., 2011, 85, 2194–2201.

    Article  CAS  PubMed  Google Scholar 

  40. Z. Zhang, C. Sha, A. Liu, Z. Zhang, and D. Xu, Highly selective detection of Cr(vi) in water matrix by a simple 1, 8-naphthalimide-based turn-on fluorescent sensor, J. Fluoresc., 2015, 25, 335–340.

    Article  CAS  PubMed  Google Scholar 

  41. J. Ni, B. Li, L. Zhang, H. Zhao, and H. Jiang, A fluorescence turn-on probe based on rhodamine derivative and its functionalized silica material for Hg2+ selective detection, Sens. Actuators, B., 2015, 215, 174–180.

    Article  CAS  Google Scholar 

  42. M. Turel, A. Duerkop, A. Yegorova, Y. Scripinets, A. Lobnik, and N. Samec, Detection of nanomolar concentrations of copper(ii) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time, Anal. Chim. Acta., 2009, 644, 53–60.

    Article  CAS  PubMed  Google Scholar 

  43. X.-F. Yang, X.-Q. Guo, and Y.-B. Zhao, Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite, Talanta., 2002, 57, 883–890.

    Article  CAS  PubMed  Google Scholar 

  44. Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi, and C. Huang, FRET-based sensor for imaging chromium(iii) in living cells, Chem. Commun., 2008, 3387–3389.

    Google Scholar 

  45. Y.-K. Yang, K.-J. Yook, and J. Tae, A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am. Chem. Soc., 2005, 127, 16760–16761.

    Article  CAS  PubMed  Google Scholar 

  46. J.-S. Wu, I.-C. Hwang, K. S. Kim, and J. S. Kim, Rhodamine-based Hg2+ selective chemodosimeter in aqueous solution: fluorescent off− on, Org. Lett., 2007, 9, 907–910.

    Article  PubMed  CAS  Google Scholar 

  47. D. Udhayakumari, S. Velmathi, Y.-M. Sung, and S.-P. Wu, Highly fluorescent probe for copper(ii) ion based on commercially available compounds and live cell imaging, Sens. Actuators, B., 2014, 198, 285–293.

    Article  CAS  Google Scholar 

  48. J. S. Kim, and D. T. Quang, Calixarene-derived fluorescent probes, Chem. Rev., 2007, 107, 3780–3799.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Sun, S. Fan, D. Zhao, L. Duan, and R. Li, A fluorescent turn-on probe based on benzo [e] indolium for cyanide ion in water with high selectivity, J. Fluoresc., 2013, 23, 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  50. K. C. Tayade, A. S. Kuwar, U. A. Fegade, H. Sharma, N. Singh, U. D. Patil, and S. B. Attarde, Design and synthesis of a pyridine based chemosensor: highly selective fluorescent probe for Pb2+, J. Fluoresc., 2014, 24, 19–26.

    Article  CAS  Google Scholar 

  51. R. Tang, K. Lei, K. Chen, H. Zhao, and J. Chen, A rhodamine-based off–on fluorescent chemosensor for selectively sensing Cu(ii) in aqueous solution, J. Fluoresc., 2011, 21, 141–148.

    Article  CAS  PubMed  Google Scholar 

  52. Z. Wang, J. H. Lee, and Y. Lu, Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA, Chem. Commun., 2008, 6005–6007.

    Google Scholar 

  53. L. Gianelli, V. Amendola, L. Fabbrizzi, P. Pallavicini, and G. G. Mellerio, Investigation of reduction of Cu(ii) complexes in positive-ion mode electrospray mass spectrometry, Rapid Commun. Mass Spectrom., 2001, 15, 2347–2353.

    Article  CAS  Google Scholar 

  54. O. Sunnapu, N. G. Kotla, B. Maddiboyina, G. S. Asthana, J. Shanmugapriya, K. Sekar, S. Singaravadivel, and G. Sivaraman, Rhodamine based effective chemosensor for Chromium(iii) and their application in live cell imaging, Sens. Actuators, B., 2017, 246, 761–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director-NITT for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Vijay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, N., Balamurugan, G., Venkatesan, P. et al. A triple action chemosensor for Cu2+ by chromogenic, Cr3+ by fluorogenic and CN by relay recognition methods with bio-imaging of HeLa cells. Photochem Photobiol Sci 16, 1441–1448 (2017). https://doi.org/10.1039/c7pp00163k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00163k

Navigation