Skip to main content
Log in

Titania hollow spheres modified with tungstophosphoric acid with enhanced visible light absorption for the photodegradation of 4-chlorophenol

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Titania hollow spheres were synthesized using silica nanospheres as the template. The core was removed using NaOH solution. They were subsequently impregnated with tungstophosphoric acid (TPA) solutions and annealed at two different temperatures (100 and 500 °C). These materials were characterized by several physicochemical techniques (XRD, BET, SEM, DRS, FT-IR, FT-Raman and 31P MAS-NMR). The 31P MAS-NMR and FT-IR characterization showed that the main species present in the samples was the [PW12O40]3− anion, which was partially transformed into the [P2W21O71]6− anion during the synthesis and drying step. 31P MAS-NMR, and FT-Raman characterization revealed the evidence of a strong interaction between the Keggin anion of TPA and TiO2 surfaces, possibly due to the formation of surface heteropolyacid- TiO2 complexes. The DRS results showed that the absorption threshold onset continuously shifted to the visible region with increased TPA concentration and calcination at 500 °C. The enhanced visible light absorption could be related to the formation of a surface complex TPA Keggin anion–TiO2. The catalytic activity of the materials in the photodegradation of 4-chlorophenol under UV and visible light irradiation increased when the TPA content and the calcination temperature of the samples were raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 1995, 12, 69–96.

    Article  Google Scholar 

  2. T. Ochiai and A. Fujishima, J. Photochem. Photobiol., C, 2012, 12, 247–262.

    Article  Google Scholar 

  3. M. N. Blanco and L. R. Pizzio, Appl. Catal., A, 2011, 12, 69–78.

    Article  Google Scholar 

  4. K. B. Kyoko, S. Kazuhiro, K. Hitoshi, O. Kiyomi and A. Hironori, Appl. Catal., A, 1997, 12, 391–409.

    Google Scholar 

  5. J. G. Yu, W. Liu and H. G. Yu, Cryst. Growth Des., 2008, 12, 930.

    Article  Google Scholar 

  6. C. Jia, Y. Cao and P. Yang, Funct. Mater. Lett., 2013, 12, 1350025–1350026.

    Article  Google Scholar 

  7. C. Liu, H. Yin, L. Shi, A. Wang, Y. Feng, L. Shen, Z. Wu, G. Wu and T. Jiang, J. Nanosci. Nanotechnol., 2014, 12, 7072–7078.

    Article  Google Scholar 

  8. L. Yan, X. He, Y. Wang, J. Li and D. Wang, J. Mater. Sci.: Mater. Electron., 2016, 12, 4068–4073.

    Google Scholar 

  9. L. Li, S. Bai, W. Yin, S. Li, Y. Zhang and Z. Li, Int.J. Hydrogen Energy, 2016, 12, 1627–1634.

    Article  Google Scholar 

  10. A. L. Di Virgilio, I. Maisuls, F. Kleitz and P. M. Arnal, J. Colloid Interface Sci., 2013, 12, 147–156.

    Article  Google Scholar 

  11. C. Castañeda, F. Tzompantzi, R. Gomez and H. Rojas, J. Chem. Technol. Biotechnol., 2016, 12, 2170–2178.

    Article  Google Scholar 

  12. M. Wang, G. Fang, P. Liu, D. Zhou, C. Ma, D. Zhang and J. Zhan, Appl. Catal., B, 2016, 12, 113–122.

    Article  Google Scholar 

  13. Y. Yao, L. Jiao, N. Yu, J. Zhu and X. Chen, Russ.J. Electrochem., 2016, 12, 348–354.

    Article  Google Scholar 

  14. J. B. Mioc, R. Z. Dimitrijevi, M. Davidovic, Z. P. Nedic, M. M. Mitrovic and P. H. Colomban, J. Mater. Sci., 1994, 12, 3705–3718.

    Article  Google Scholar 

  15. V. M. Fuchs, E. L. Soto, M. N. Blanco and L. R. Pizzio, J. Colloid Interface Sci., 2008, 12, 403–411.

    Article  Google Scholar 

  16. F. Lefebvre, J. Chem. Soc., Chem. Commun., 1992, 10, 756–757.

    Article  Google Scholar 

  17. K. Li, Y. Guo, F. Ma, H. Li, L. Chen and Y. Guo, Catal. Commun., 2010, 12, 839–843.

    Article  Google Scholar 

  18. K. Li, X. Yang, Y. Guo, F. Ma, H. Li, L. Chen and Y. Guo, Appl. Catal., B, 2010, 12, 364–375.

    Article  CAS  Google Scholar 

  19. M. T. Pope, Heteropoly and Isopolyoxometalates, Springer Verlag, Heidelberg, 1983, p. 58.

    Book  Google Scholar 

  20. R. Massart, R. Contant, J. Fruchart, J. Ciabrini and M. Fournier, Inorg. Chem., 1977, 12, 2916.

    Article  Google Scholar 

  21. V. M. Mastikhin, S. M. Kulikov, A. V. Nosov, I. V. Kozhevnikov, I. L. Mudrakovsky and M. N. Timofeeva, J. Mol. Catal. A: Chem., 1990, 12, 65–70.

    Article  Google Scholar 

  22. C. Rocchiccioli-Deltcheff, R. Thouvenot and R. Franck, Spectrochim. Acta, Part A, 1976, 12, 587–597.

    Article  Google Scholar 

  23. R. Contant, Can. J. Chem., 1978, 12, 568–573.

    Google Scholar 

  24. I. Holclajtner-Antunovic, D. Bajuk-Bogdanovic, A. Popa and S. Uskokovic-Markovic, Inorg. Chim. Acta, 2012, 12, 26–32.

    Article  Google Scholar 

  25. J. Li, W. Kang, X. Yang, X. Yu, L. Xu, Y. Guo, H. Fang and S. Zhang, Desalination, 2010, 12, 107–116.

    Article  Google Scholar 

  26. J. T. Yates, Surf. Sci., 2009, 12, 1605–1612.

    Article  Google Scholar 

  27. J. S. Noh and J. A. Schwarz, J. Colloid Interface Sci., 1988, 12, 157–164.

    Google Scholar 

  28. H. Park and W. Choi, J. Phys. Chem. B, 2003, 12, 3885.

    Article  Google Scholar 

  29. R. R. Ozer and J. L. Ferry, J. Phys. Chem. B, 2000, 12, 9444.

    Article  Google Scholar 

  30. S. Antonaraki, T. M. Triantis, E. Papaconstantinou and A. Hiskia, Catal. Today, 2010, 12, 119–124.

    Article  Google Scholar 

  31. R. Sivakumar, J. Thomas and M. Yoon, J. Photochem. Photobiol., C, 2012, 12, 277–298.

    Article  Google Scholar 

  32. J. A. Rengifo-Herrera, M. N. Blanco and L. R. Pizzio, Mater. Res. Bull., 2014, 12, 618–624.

    Article  Google Scholar 

  33. T. Tachikawa, S. Tojo, M. Fujitsutka and T. Majima, Chem. - Eur. J., 2006, 12, 3124–3131.

    Article  CAS  Google Scholar 

  34. D. T. Sawyer and J. S. Valentine, Chem. Res.., 1981, 14, 393–400.

    Article  CAS  Google Scholar 

  35. Y. Nosaka, Y. Yamashita and H. Fukuyama, J. Phys. Chem. B, 1997, 101, 5822–5827.

    Article  CAS  Google Scholar 

  36. H. Sakai, R. Baba, K. Hashimoto, A. Fujishima and A. Heller, J. Phys. Chem. B, 1995, 12, 11896–11900.

    Article  Google Scholar 

  37. A. Mylonas and E. Papaconstantinou, J. Photochem. Photobiol., A, 1996, 94, 77–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Pizzio.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00175k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, M.Á., Osiglio, L., Arnal, P.M. et al. Titania hollow spheres modified with tungstophosphoric acid with enhanced visible light absorption for the photodegradation of 4-chlorophenol. Photochem Photobiol Sci 16, 46–52 (2017). https://doi.org/10.1039/c6pp00175k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00175k

Navigation